# MA6E0 Lie Groups

**Lecturer: Dmitriy Rumynin**

**Term(s):** Term 2

**Commitment:** 30 Lectures

**Assessment:** Oral exam

**Prerequisites:** A knowledge of calculus of several variables including the Implicit Function and Inverse Function Theorems, as well as the existence theorem for ODEs. A basic knowledge of manifolds, tangent spaces and vector fields will help. Results needed from the theory of manifolds and vector fields will be stated but not proved in the course.

**Content**: The concept of continuous symmetry suggested by Sophus Lie had an enormous influence on many branches of mathematics and physics in the twentieth century. Created first as a tool in a small number of areas (e.g. PDEs) it developed into a separate theory which influences many areas of modern mathematics such as geometry, algebra, analysis, mechanics and the theory of elementary particles, to name a few.

In this module we shall introduce the classical examples of Lie groups and basic properties of the associated Lie algebra and exponential map.

**Books**:

The lectures will not follow any particular book and there are many in the Library to choose from. See section QA387. Some examples:

C. Chevalley, *Theory of Lie Groups, Vol I*, Princeton.

J.J. Duistermaat, J.A.C. Kölk, *Lie Groups*, Springer, 2000.

F.W. Warner, *Foundations of Differentiable Manifolds and Lie Groups*, (Graduate Texts in Mathematics), Springer, 1983.