Skip to main content Skip to navigation

Film coating and droplet spreading on conical fibers

Plants and insects use slender conical structures to transport and collect small droplets, which are propelled along the conical structures due to capillary action. These droplets can deposit a fluid film during their motion, but despite its importance to many biological systems and industrial applications the properties of the deposited film are unknown. I will in this talk discuss how these droplets are able to self-propell and deposit a liquid by developing an asymptotic analysis together with experimental measurements and numerical simulations based on the lubrication equation. We show that the deposited film thickness depends significantly on both the fiber radius and the droplet size, highlighting that the coating is affected by finite size effects relevant to film deposition on fibres of any slender geometry. We show that self-propelled droplets have significant potential to create passively coated structures.