Skip to main content Skip to navigation

PhD Project Opportunities 2024 OLD

HetSys recruits enthusiastic students from across the physical sciences who enjoy using their mathematical skills and thinking flexibly to solve complex problems to join our training programme.

The following projects are now recruiting for a September 2024 start.

For guidance on how to apply, student funding, the integrated HetSys training programme and what life is like in the HetSys CDT, please visit the Study with Us page.

Project Title Description Keywords

Pushing the boundaries of resolution of biological objects by electron microscopy with GPU-enhanced ptychography

The project aims to enhance Single Particle Analysis (SPA) software, a vital 3D imaging tool in structural biology, by integrating GPU-enhanced ptychography, an advanced computational microscopy technique, into a worldwide SPA framework. Traditional SPA techniques face limitations in resolving small and complex biological macromolecules. By incorporating ptychography, known for its high phase-sensitivity and applicability in low-dose data scenarios, researchers can achieve higher resolution in cryo-electron microscopy. This integration extends the utility of SPA, allowing researchers to work with diverse imaging modalities, significantly elevate data quality, and push the boundaries of resolution. Through international collaboration with leading experts and cutting-edge resources, we aim to advance structural biology, providing the potential for more precise macromolecular reconstructions and overcoming current challenges. Atomistic

DRUG-THE-BUG: Determining druggable binding sites in bacterial membrane proteins

The bacterial cell envelope is the front-line to killing drug-resistant, pathogenic bacteria. The development of new protein structure prediction methods (e.g. RoseTTA All-Atom AlphaFold and ESMFold) have enabled the accurate computational determination of over 600 million protein structures. This dataset enables the study of entire bacterial membrane proteomes from the perspective of structure-based drug discovery. As part of this Cresset-sponsored PhD studentship (https://www.cresset-group.com), you will develop and apply methods to identify and characterize binding pockets, predict candidate small molecule and antibody binding, and perform free energy calculations of molecules bound to folded protein structures. The overall aim of this PhD proposal is to develop blueprints for new medicines to treat drug-resistant bacterial infections. Atomistic

Modelling extreme magnetosphere-atmosphere interactions

Extreme Space Weather is driven by large-scale eruptions from the Sun called coronal mass ejections. Upon arrival at the Earth, these produce amazing auroral displays but also endanger satellites and disrupt communication signals. Accurately modelling magnetosphere-atmosphere energy transfers is important to understanding the evolution of planetary atmospheres as well as developing real-world space weather forecasts. Through collaboration with QinetiQ, this project will develop state-of-the-art plasma simulations to probe magnetosphere-atmosphere interactions during solar storms, with application to characterising their technological impacts as well as to understanding Earth-like exoplanets subjected to more extreme star-planet interactions. Continuum