Research Project Topics for 2013-2014
NOTE: The list is still being updated for 2015-2016.
Also keep in mind that there is considerable overlap between different categories listed below and many academic staff work across areas. We have given cross references in many cases, but you should browse the list carefully and talk with more than one member of staff.
You may also want to consult these pages: area and permanent staff
Algebra and Group Theory
Inna Capdeboscq can supervise projects in group theory, groups of Lie type, finite simple groups.
Derek Holt is willing to supervise one (or at most two) research projects on the topic of Computational Group Theory. The project would involve some programming. Prospective students would have to see him to discuss further details.
Daan Krammer offers project in the areas of representation of groups, low-dimensional topology, and combinatorics. Subareas may include reflection groups, braid groups, knots, mapping class groups, hyperplane arrangements, Garside groups, ordered sets, ...... A precise topic for 4th year projects under his supervision are determined after consultation. The keywords above indicate what sort of topics can be expected. This list is far from being exhaustive.f
Diane Maclagan can supervise projects in commutative algebra. See here for more details. (See also Algebraic Geometry and Combinatorics.)
Dmitriy Rumynin is interested in Algebra and Representation Theory. Prospective students would have to see him to discuss further details.
Marco Schlichting can supervise projects in
Homological/Homotopical Algebra: Algebraic K-theory, Homology of classical groups, Derived Categories, Quillen Model categories,
Algebra: quadratic forms and central simple algebras, projective modules, Milnor K-theory
Algebraic Geometry: Algebraic cycles, (oriented) Chow groups, Motivic Cohomology, A1-Homotopy theory
Algebraic Topology: Homotopy theory, topological K-theory
Number theory
(See also Adam Epstein)
Alex Bartel is willing to supervise one or two projects in the field of algebraic number theory. Possible topics include:
Local class field theory. Local class field theory describes the abelian Galois extensions of a local field, e.g. of the field of p-adic numbers. The theory is of central importance in modern algebraic number theory: it is nowadays the preferred path towards establishing the analogous global theory, i.e. to describe the abelian extensions of number fields (even though historically, the global theory was discovered before the local); the latter in turn is, in a sense, the 1-dimensional case of the Langlands program, a large web of conjectures that link together almost all areas of pure mathematics. The aim of this essay would be to prove most of the results of local class field theory, following one (or several) of the standard texts, and to briefly state the results in the global case. Knowing the basics about p-adic fields is a prerequisite.
Galois module structures. The bracketing term "Galois module structures" refers to the study of how Galois groups act on usually discrete objects, such as on the ring of integers of a Galois extension of number fields, or on its units. A classical theorem due to Noether says that if K/Q is a Galois extension with Galois group G, then as a Z[G]-module the ring of integers of K is locally free if and only if K is at most tamely ramified. The main goal of this essay would be to give an exposition of this result. Possible further developments include explaining Froehlich's description of the locally free class group, or outlining the strategies available in the wildly ramified case. This is a fascinating blend of number theory and representation theory, and a good grasp of both, as taught in the third year, is essential.
John Cremona offers projects described here.
Vladimir Dokschitser offers projects in number theory.
David Loeffler (on leave 2014-2015) would be willing to supervise one or possibly two projects next year in the field of algebraic number theory. Possible topics are:
-
Arithmetic of p-adic number fields The field of p-adic numbers is a very important tool in algebraic number theory, giving a bridge between finite fields (which are nice and simple and easy to work with) and the rational number field (which is much more sophisticated). The aim of this project would be to understand some of the basic properties of the fields of p-adic numbers and their finite extensions (such as Hensel's lemma, ramified and unramified extensions, etc); from there the project could develop in several directions, such as the theory of Witt vectors, higher ramification groups, p-adic analysis, or the beginnings of p-adic Hodge theory.
-
The Birch-Swinnerton-Dyer conjecture. The BSD conjecture is a well-known conjecture about elliptic curves, relating the rank of an elliptic curve to the order of vanishing of its L function. A successful essay should start with an exposition of the conjecture itself, and go on to cover some of the partial results in the direction of the BSD conjecture, such as the work of the Dokchitser brothers which establishes the conjecture modulo 2 using properties of integral group representations.
Samir Siksek is interested in number theory and diophantine equations. Prospective students would have to see him to discuss further details.
Algebraic Geometry
(See also Marco Schlichting and Weiyi Zhang)
Gavin Brown can supervise projects in algebraic geometry, including the projective geometry of curves and surfaces and applications of Riemann Roch.
Miles Reid has a variety of possible projects on offer related to modern research in algebraic geometry, and to MA4A5 Algebraic Geometry or MA426 Elliptic Curves. He can also propose problems related to advanced topics in Galois theory, commutative algebra and algebraic number theory for suitably motivated students.
-
Finite subgroups of SL(2, CC) and SL(3, CC)
Explicit generators, invariant theory. Work of Klein around 1870, but recently developed in many directions. Start from my preliminary chapter on cyclic quotient singularities. See for example my Bourbaki seminar or the references given on my McKay correspondence website. -
Quaternions, octonions, special geometric structures and exceptional Lie groups
See any introductory text on quaternions (for example, Balazs Szendroi and Miles Reid, Geometry and Topology, Chapter 8), followed by John C Baez, The Octonions, 56 pages, preprint available from uk.arXiv.org as math.RA/0105155, and John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd. 2003 IBSN 1568811349 -
Topology, projective geometry and enumerative geometry of Grassmann varieties and projective homogeneous spaces.
-
Applications of Riemann Roch on curves and surfaces
Graded rings, computer algebra calculations. Computer enumeration of graded rings of interest in algebraic geometry. Work of mine and my students. It contains lots of fairly simple minded combinatorial problems that lend themselves to computing. Start from my preliminary chapter on graded rings, then look at Gavin Brown's GRDB website.
Diane Maclagan can supervise projects in several different areas of algebraic geometry. See here for more details. (See also Algebra and Combinatorics.)
David Mond’s research interests lie in the area of singularity theory and algebraic geometry. Prospective students would have to see him to discuss further details.
Damiano Testa (on leave 2015-2016) is interested in Algebraic geometry and Number Theory. Prospective students would have to see him to discuss further details.
Analysis
(See also Rodrigo, Robinsion,Topping)
Keith Ball (on leave second 2016). He would otherwise offer a project on Sphere-packing. The question of how best to pack spheres in space goes back at least to Kepler. Research on this topic over the centuries has involved geometry, analysis and number theory. The project will examine upper and lower bounds on the optimal density of packing including quite recent work of Venkatesh.
David Preiss’s research interest lie in the area of mathematical analysis. Prospective students would have to see him to discuss further details.
Daniel Seco is willing to supervise a project about complex or real functions. Prospective students would have to see him to discuss further details. Possible topics include:
Subspaces of a given space of functions that are dense and/or invariant;
Zeros of a sequence of polynomials and their limit distributions;
Understanding the general characteristics of some function spaces.
Applied Analysis
Charles Elliott’s research is centred around nonlinear partial differential equations and computational mathematics with applications(mathematical biology, material science, continuum mechanics, phase transitions etc) including numerical analysis and applied analysis. In particular, finite element methods, free boundary problems, geometric evolution equations and surface growth, two phase flow, cell motility, biomembranes and PDE optimisation. In the year 2015/165 he will be giving the fourth year module MA4K2 Optimisation and Fixed Point Theory in the Autumn Term. This module is a natural companion to Theory of PDEs, Advanced PDEs, Numerical Analysis of PDEs and Advanced Real Analysis as well as other modules in Analysis and Applied Mathematics. Projects may be in any of applied analysis, numerical analysis, computation and modelling and topics include:- (A) Variational problems with point constraints involving inverse, control or cell biology applications (B) PDE methods applied to networks (C) Functions of bounded variation: applications and computation. (D) Time dependent function spaces and PDEs in evolving domains. Prospective students would have to contact him to discuss further details. Please consult his web page where more details will appear.
Jose Rodrigo’s research interests lie in the area of partial differential equations and fluid mechanics. Prospective students would have to see him to discuss further details.
James Robinson's interests are in rigorous fluid dynamics and turbulence; infinite-dimensional dynamical systems; random dynamical systems; non-autonomous dynamical systems; embeddings of finite-dimensional sets into Euclidean spaces. Prospective students would have to see him to discuss further details.
Combinatorics
Agelos Georgakopoulos offers the following:
Random walks and random graphs. The objective is to understand certain random graphs that arise by performing random walks on Cayley graphs. This can be pursued by means of theoretical work (hard) or computer simulations and statistical analysis. A good background in probability is desired. Other projects related to graphs and/or random walks might be available after consultation.
Vadim Lozin offeres projects in graph theory, combinatorics, discrete mathematics
Daniel Kral works in combinatorics and related areas of theoretical computer science. He is open to advising student projects in particular related to limits of combinatorial objects, linear programming methods in combinatorics, classical structural graph theory, and logic-based approaches in algorithm design. There are many problems of different difficulties in these areas, so it would be best if prospective students come to see him and discuss their own interests to choose a suitable topic for the project.
Diane Maclagan offers several projects related to matroids. See here for more details. (See also Algebra and Algebraic Geometry.)
Oleg Pikhurko’s research interests lie in the area of combinatorics and graph theory, in particular in applying tools from probability, analysis, and algebra to discrete problems. This is a deep and thriving area, with many possible projects that can help you to prepare for PhD studies. Prospective students should contact Prof Pikhurko by email.
Bruce Westbury offers the following two topics:
-
Dilogarithm: This is an interesting special function with several elementary definitions. The aim of the essay is to present applications to volumes of hyperbolic tetrahedra. For example, the dilogarithm satisfies a functional equation which has a straightforward interpretation in terms of volumes of ideal tetrahedra. The dilogarithm is also related to volumes of orthoschemes (analogues in 3D of right-angled triangles). This is discussed in:
Vinberg, È. B. The volume of polyhedra on a sphere and in Lobachevsky space. Algebra and analysis (Kemerovo, 1988), 15--27, Amer. Math. Soc. Transl. Ser. 2, 148, Amer. Math. Soc., Providence, RI, 1991. -
Cyclic Sieving Phenomenon: This is a branch of combinatorics which studies finite sets with an action of a cyclic group. The orbit structure is encoded by a polynomial. This only requires the character theory of cyclic groups. However studying interesting examples seems to lead to deep mathematics.
There is an excellent survey by Bruce Sagan. -
Circle packing (Note this is *not* related to the problem of fitting as many circles into a region as possible.) An excellent introduction to this topic with plenty of pictures is Introduction to circle packing. The theory of discrete analytic functions by Stephenson, Kenneth. Cambridge University Press, Cambridge, 2005. Since this book was published there have much clearer proofs of the main theorem. The theory of circle packings gives a discete theory of analytic functions. The aim of the essay would be to present a proof of the main theorem or an account of an application of circle packing to analytic functions. For example, the uniformisation theorem can be deduced from the main theorem of circle packing.
Stephenson, Kenneth . Introduction to circle packing. The theory of discrete analytic functions. Cambridge University Press, Cambridge, 2005
Bobenko, Alexander I. ; Springborn, Boris A. Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc. 356 (2004), no. 2, 659--689.
Rivin, Igor . Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. of Math. (2) 139 (1994), no. 3, 553--580.
Stephenson, Kenneth . Circle packing: a mathematical tale. Notices Amer. Math. Soc. 50 (2003), no. 11, 1376--1388. -
Rolling Balls. There has recently been a spate of papers explaining how the exceptional simple Lie group G_2 appears in the mechanics of two balls rolling without slipping or spinning on each other but only if the radii are in the ration 1:3.
Differential Geometry and PDE
(See Applied Analysis above and areas such a Fluid Dynamics and Computational Mathematics below for further topics in PDEs).
Mario Micallef’s research interest lie in the area of partial differential equations and differential geometry. Prospective students would have to see him to discuss further details.
Peter Topping (on leave term1) offers various options in geometric analysis. There will be many different challenging projects possible in this active area. The suitable student will have interest both in differential geometry and in PDE theory (and should normally be taking Advanced PDE). It might be some effort to understand enough to start the project, but it should leave you in a great position to start PhD research in the area.
Claude Warnick is interested in problems in PDE and differential geometry relating to Einstein's theory of general relativity. Possible projects include: quasinormal modes of black holes; nonlinear wave equations; Zermelo's navigation problem and light propagation. Prospective students would have to see him to discuss further details.
Ergodic Theory and Dynamical Systems
(See also James Robinson, and David Wood)
Claude Baesens's interests are in dynamical systems and applications to physics, and in exponential asymptotics. She is offering projects on Frenkel-Kontorova models and on canard solutions in slow-fast dynamical systems. Prospective students would have to see her to discuss further details.
Adam Epstein offers projects in Complex and Arithmetic Dynamical Systems, and also in Set Theory and Logic. For example:
Arithmetic Questions in Holomorphic Dynamics: Consider the polynomials F_n(c) = p_c o ... o p_c(0) (n-fold self-composition) where p_c(z) = z^2 + c. It is known that all roots of F_n(c) are simple. The polynomial F_n splits into factors, some of which arise as F_m for smaller m dividing n: when such factors are divided out, the resulting polynomials are conjectured to be irreducible. Questions of this nature arise for other interesting families of rational maps, and little is known in general. Well-organised computer experimentation would be a good start. This would be an appropriate project for a student who has taken, or will be taking Algebraic Number Theory (or Galois Theory). Familiarity with basics from Complex Analysis and Dynamical Systems would also be useful.
He is also willing to supervise appropriate mutually agreed projects in set theory and logic.
Vassili Gelfreich’s research interests lie in the area of dynamical systems. Prospective students would have to see him to discuss further details.
Oleg Kozlovski is interested in Dynamical systems, ergodic theory, mathematical physics, financial mathematics. Prospective students would have to see him to discuss further details.
Ian Melbourne (on leave) is interested in Ergodic theory and Dynamical systems, including probabilistic or stochastic aspects of deterministic dynamical systems. Prospective students would have to see him to discuss further details.
Mark Pollicott is interested in Ergodic theory, with applications to analysis, number theory, and geometry. Prospective students would have to see him to discuss further details.
Richard Sharp is willing to supervise one (or at most two) research projects on a topic in Ergodic Theory or its applications to other areas of pure mathematics. Prospective students would have to see him to discuss further details.
Geometry, Topology and Geometric Group Theory
(see also Marco Schlichting)
Brian Bowditch offers project in hyperbolic geometry, low-dimensional topology, geometric group theory
John Rawnsley is interested in symplectic geometry, geometrical methods of quantisation and the study of Lie groups. Prospective students would have to see him to discuss further details.
Saul Schleimer is interested in geometric topology, group theory, and computation. Prospective students would have to see him to discuss further details.
Karen Vogtmann is interested in geometric group theory, low-dimensional topology, cohomology of groups.
Weiyi Zhang is interested in symplectic topology, complex geometry and low dimensional topology.
Complexity Science
(see also Dwight Barkley, and Matt Keeling)
Colm Connaughton offere project in non-equilibrium statistical mechanics, fluid dynamics and turbulence, nonlinear waves, interacting particle systems
Stefan Grosskinsky (on leave Terms 2 and 3). His interests are in applied probability theory, stochastic processes and complex systems, statistical mechanics. Prospective students would have to see him to discuss further details.
Markus Kirkilionis's interests are in complex systems, mathematical biology, dynamic network models, numerical analysis, pattern formation, physiologically structured Population models, (monotone) dynamical systems. Prospective students would have to see him to discuss further details.
Robert MacKay (on leave 2015-2016) Nevertheless, he offers projects in a range of applications of mathematics, in particular:
Hubble’s law without Friedmann’s equations
Hierarchical aggregation of Markov processes
Metrics on probability distributions for probabilistic cellular automata
Dynamic dependency graphs for evaluation of policy
See here for further details.
Computational Mathematics and Numerical Analysis
(See also Charles Elliott, Matteo Icardi, and Robert Kerr)
Dwight Barkley offers projects on modern approaches to turbulence and on nonlinear waves. The projects involve numerical simulations and possibly concepts from dynamical systems and complexity science. Students must be comfortable with numerical computations and must able to program in a high-level language C/C++/Fortran. Please see the following to get a flavour of the work: here, here, here, here, here, and here. Several past projects have resulted in publications in scientific journals. Students for these projects need to begin work in the summer.
Andread Dedner's interests are in numerical analysis and scientific computing, with particular emphasis in high-order methods for non-linear equations and applications in geophysical flows, radiation magnetohydrodynamics, and reaction-diffusion equations. Prospective students would have to see him to discuss further details.
Björn Stinner is interested in free-boundary problems and PDEs on manifolds, applied analysis of nonlinear partial differential equations,
finite element methods and their numerical analysis, continuum modelling, particularly based on the phase field methodology. Prospective students would have to see him to discuss further details.
Andrew Stuart works in applied and computational mathematics, with particular interests in Inverse Problems for Differential Equation (both Deterministic and Stochastic), mainly arising from applications in the physical sciences. Prospective students should contact him for further details.
Fluid Dynamics
(See also Colm Connaughton and the Applied Analysis and Computational Mathematics sections above)
Matteo Icardi offers the following projects in applied maths:
Colloid transport in subsurface flows: development and simulation of stochastic Langevin transport models in complex geometries
Granular media: simulation and statistical analysis of synthetic random packings of convex-shaped grains
Fluid-particle systems: development of novel momentum transfer closures based on accurate statistical estimation of random particle configurations in turbulent flows
Carbon dioxide storage and sequestration: parameter estimation and inverse problems in capillary dominated porous media flows
Pore-scale simulations: mesh adaptivity and a-posteriori error estimation for 3D Stokes equation in complex geometries
All the projects require basic numerical analysis and fluid mechanics knowledge and motivation towards C++ or Python programming in Unix environment. The code developments are to be integrated in existing open-source libraries (e.g., OpenFOAM or other in-house codes)
Robert Kerr's current interests include the mathematics of the turbulent energy cascade and conditions for singular behaviour in fluid and related equations, including the three-dimensional nonlinear Schroedinger equations for quantum fluids and atmospheric wave equations.
The perspective of the project is numerical and would be based on the latest high-resolution calculations. Potential topics include comparing some of the new statistics generated by these simulations to the latest proofs from rigorous mathematics for singularities, or visualising the underlying structural alignments that have either been assumed or shown analytically must exist if these equations have singularities. For example, I would like to understand helicity, a topological measure of the twisting of vortex lines. This can be represented from either in physical space, in which case the Frenet-Serret equations for the curvature of vortex lines would be used, or from a Fourier perspective.
Sergey Nazarenko offere projects on turbulence and waves in classical, quantum and astrophysical fluids.
James Sprittles offers projects on the mathematical modelling and computational simulation of fluid mechanical phenomena, particularly those driven by complex interfacial effects which are prevalent in the emerging field of micro/nanofluidics. These microflows often require new modelling approaches, involving both continuum and particle-based methods, coupled to efficient computational techniques and are currently an area of intensive research interest. Possible projects include (but are not limited to):
Gas Dynamics in Free-Surface Flows: Thin films of gas often have a huge influence on the dynamics of liquid volumes, e.g. when drops impact solids, but at present are lacking an accurate theoretical description (in fact, often their influence is ignored). The problem is that their dimension is such that classical continuum mechanics fails and kinetic theory governed by the Boltzmann equation is required. This project will involve developing new models for this class of flows, with particular attention applied to the coupling of kinetic theory with continuum mechanics, and exploiting scale-separation to make these models computationally tractable.
Universal Behaviour of Drop Formation: The formation of a drop from a column of liquid (as seen from a dripping tap) is a singular flow which, remarkably, is governed by a 'universal' similarity solution (i.e. the final stages of the liquid breaking always look the same). However, recent computational results have revealed, twenty years after the original theory was proposed, that the approach to this solution is not uniform, so that the liquid's surface oscillates in time. This project will involve developing theory and computations to investigate the stability of the similarity solution in order to understand these new surprising results.
Oleg Zaboronski offers a project related to
-
Metastability in stochastic Euler dynamics. During this project, the student will learn about:
1. Arnold's algebraic formulation of 2d Euler equation
2. Zeitlin's su(N) approximation of 2d Euler flow
3. Stochastic Euler equation on su(N)
4. Control of stochastic Euler flow on su(N) using gradient dissipation built out of integrals of motion and the associated invariant measures.
5. Dynamics of stochastic Euler flow on su(N) for multimodal invariant measures using Wentzel-Fradkin theory.
Mathematical Biology, Epidemiology, Ecology and Evolution
(see also Elliott and Stinner)
Deirdre Hollingsworth offers projects in infectious disease modelling.
Matt Keeling offers projects in the areas of Epidemiology,Ecology or Evolution. Epidemiology (the study of infectious diseases and their spread in populations), Ecology (the study of animal/plant populations and their environment), Epidemiology (the study of disease spread and control) and Evolution (the study of the long-term dynamics of populations) present a wide variety of interesting problems that require a mathematical approach. There are a vast number of problems and approaches that could be studied, ranging from model-development, to computer simulation, to statistical analysis. If you've attended (or planning to attend) MA4E7: Population Dynamics, that would be a distinct advantage although not essential. I like to offer projects that show how the mathematical techniques you've learnt can be applied to real questions to obtain useful or meaningful insights. If you're interest, its probably easiest to come and talk with me, and together we can determine a specific project that matches your interests and skills.
Recent projects have included the evolution and competition of influenza strains, diffusion approximations to disease spread on networks, optimal control of spatial epidemics, Nicholson-Bailey lattice models.
Dave Wood would be willing to discuss possible topics given the information below. His main interests for projects include ecological type modelling, investigating systems with symmetry (including but not limited to applications to arthropod locomotion) and applications of mathematics in industry. Systems with symmetry could be theoretical or applied, but would concentrate on using methods from MA3H8 Equivariant Bifurcation Theory, so this may interest students who took that last year, or a project could easily run in parallel with taking that module in term 1 of the 2015/16 academic year. The industrial applications could cover a broad range of mathematical disciplines and be a survey of some problems that have already been studied or a look at a new problem involving original research. Ecological modelling I would be happy to consider any suitable application that a student feels passionate about (see below for a couple of past such projects).
Previous titles he has supervised include: “Coupled cell networks, bifurcations and symmetry”, “The effects of tuna fishing on dolphin populations”, “Symmetry in coupled cells and neuronal networks”, “Applications of maths in industry”, “Discrete maths in industry”, “Modelling the Future of the Hawaiian Honeycreeper: An Ecological and Epidemiological problem” (the latter of which led to a successful PhD).
Hugo van den Berg offers projects in the area of Mathematical Biology. Prospective students would have to see him to discuss further details. Prospective students would have to see him to discuss further details.
Nigel Burroughs applies mathematical and statistical methods to biological systems. He is primarily interested in understanding the mechanics and mechanisms of cells, in effect how they work and achieve the spectacular range of behaviours that are observed. He uses a combination of model development, mathematical analysis (dynamical systems, perturbation theory), simulation and statistical computation (Markov chain Monte Carlo methods), with both deterministic and stochastic models/systems, although most are stochastic given the fact that cells often show stochastic behaviour. Projects are in the mechanics of cell division, from the duplication and separation of the chromosomes to the mechanical separation of cells into two daughter cells, (1, 2 below), cell differentiation (specialisation) in blood, (3), and transport and dynamic processes in cells, such as microtubule modelling (4).
1. Chromosomes are duplicated but then have to be divided so that each daughter gets a copy. This is achieved by 'holding' the pairs at the cell equator until all pairs are in position, but this requires tension and environment sensing by the chromosomes. How this occurs is poorly understood, but the fact that the majority of chromosomes oscillate across the cell equator gives significant insight into the mechanical forces in the system. This project would involve analysis of deterministic and stochastic models of oscillation of paired chromosomes (dynamical systems techniques and simulation), examining different mechanisms of feedback. Students with MCMC experience may also be able to fit such models to data.
2. Statistical computation (MCMC) analysis of chromosome oscillations. See above (1) for system description. Here you would use our large database of paired chromosome trajectories (1000s of trajectories) to understand the statistical structure of chromosome oscillations, fitting saw-tooth like oscillatory profiles, to examine for example memory in the oscillation. Uses hidden Markov models. Experience with MCMC and probability theory is essential.
3. Cell differentiation through a bistable switch. Cells in the body have to specialise and this is performed by switching on/off whole swathes of genes, essentially through a feedback switch giving rise to multi-stable systems. This project involves looking at gene expression data (cells of the blood line) and inferring the regulatory network topology of such a bistable switch. Experience with MCMC and probability theory is essential.
4. Microtubules are biological polymers; they polymerise into tubes and exhibit what is called dynamical instability, switching from periods of growth to decay. What causes this (stochastic) switching is unknown but likely an emergent property of the microtubule lattice. The idea of this project would be to construct models and an MCMC algorithm to fit those models of lattice dynamics to data to examine the degree to which such data can inform on the underlying processes. Experience with MCMC and probability theory is essential.
Prospective students should contact him to discuss further details. [Experience with MCMC means acquaintance with Gibbs and Metropolis-Hastings algorithms and their use in simulating posterior probability distributions. Experience coding an algorithm for a simple problem would be an advantage].
is interested in application of mathematics and statistics to biological and medical problems. Prospective students would have to see him to discuss further details.
David Rand's main research interest is Systems Biology, particularly understanding the design principles of regulatory and signalling systems in cells. Prospective students would have to see him to discuss further details.
Mathematical Physics, Molecular Dynamics, and Statistical Mechanics
(see also Stochastic Analysis and Probability)
Stefan Adams offers project on large deviation theory, probability theory, Brownian motions, statistical mechanics, gradient models, multiscale systems.
Roman Kotecky's interests are in discrete mathematics, probability theory, statistical mechanics, mathematical physics. Prospective students would have to see him to discuss further details.
Florian Theil offers project in the area of molecular dynamics which is an active and fast developing field in Applied Mathematics. The objective is to obtain insight into complex molecular systems by means of computer simulations instead of using experimental techniques. Due the high dimensionality the simulations are very costly and consequentially analytical results can provide valuable insights which potentially improve the efficiency of the numerical approaches. The proposed fourth year projects involve the application of tools from Stochastic Analysis and PDE theory to MD systems.
Daniel Ueltschi's interests are in analysis, probability theory, statistical mechanics, mathematical physics. Prospective students would have to see him to discuss further details.
Roger Tribe offers projects on determinantal point processes - randomly arranged points whose distribution is characterized via determinants. (See Terrence Tao blog on https://terrytao.wordpress.com/2009/08/23/determinantal-processes/). Other projects also available.
Multiscale Methods
Christoph Ortner offers 4th year project(s) on the analysis and numerics of molecular mechanics and multiscale models. Possible projects may involve any combination of the model formulation, numerical computations or the analysis of a mathematical model. Prospective students would have to see him to discuss further details.
Stochastic Analysis and Probability
(see also Ian Melbourne, Oleg Zaboronski, Andrew Stuart, as well as the Complexity Science and Mathematical Physics)
Martin Hairer's interests are in stochastic PDE's, stochastic analysis, functional analysis, homogenisation theory. Prospective students would have to see him to discuss further details.
Xue-Mei Li is happy to supervise projects in stochastic differential equations, stochastic analysis on manifolds, and stochastic homogenization in a geometric context.
Neil O'Connell can supervise projects on Stochastic analysis; Brownian motion, random walks and related processes, especially in an algebraic context; random matrix theory; combinatorics; representation theory