# Navier boundary conditions

Here we consider Navier boundary conditions:

where . As the second of the above boundary conditions is a *natural boundary condition* (rather than an *essential boundary condition*) we have to modify the energy functional

by adding the respective boundary terms

.

These terms correspond to the energy required to impose the boundary conditions on the solution. Hence we will consider the energy functional of the form

We will consider the function set

which is a convex, closed subset of the Hilbert space . The respective energy minimisation problem is to find such that

Our aim is to find a solution to the above minimisation problem. We have, similarly as in the case of Dirichlet boundary conditions, that if then the functional is -convex and the minimisation problem has a unique solution (see Lemma 3 of the RSG report).

## The Euler-Lagrange equations

The respective Euler-Lagrange equations are

where is the minimiser, and

We note that if is a solution to (2) then it is also a solution to (1) (because is convex on ).

We shall now focus on finding the solution to (1). We will find the solution by formal integration by parts some of the terms appearing in (3) and considering the substitution .

Precisely, let , be the solution of

We note that this equation comes from integrating by parts the Euler-Lagrange equations and formally substituting .

From here we define to be the solution of

One can show that if , then there exists a unique solution and that, given , there exists a unique solution . In particular, this gives us the pair of functions , . One can then show that this pair of functions is the solution to the Euler-Lagrange equations. For the full proof we refer to Section 4.2.2 of RSG report.