Skip to main content

MA4A2 Content

Content: Partial differential equations have always been fundamental to applied mathematics, and arise throughout the sciences, particularly in physics. More recently they have become fundamental to pure mathematics and have been at the core for many of the biggest breakthroughs in geometry and topology in particular. This course covers some of the main material behind the most common 'elliptic' PDE. In particular, we'll understand how analysis techniques help find solutions to second order PDE of this type, and determine their behaviour. Along the way we will develop a detailed understanding of Soblev spaces.

This course is most suitable for people who have liked the analysis courses in earlier years. It will be useful for many who intend to do a PhD, and essential for others. There are not too many prerequisites, although you will need some functional analysis, and some facts from Measure Theory will be recalled and used (particularly the theory of Lp spaces, maybe Fubrini's theorem and the Dominated Convergence theorem etc.). It would makes sense to combine with "MA3G1 Theory of PDEs", in particular the parts about Laplace's equation, in order to see the relevant context for this course, although this is not essential.

Aims: To introduce the rigorous, abstract theory of partial differential equations.