Skip to main content

Structural Engineering

Struct Eng
 Structures

The Challenges

The UK Government has set a number of challenging targets for improving sustainability, with the overarching goal of a 60% reduction in carbon emissions by 2050. Without dramatically improving the life-cycle environmental cost of infrastructure stock, it will not be possible to reduce resource consumption and meet this declared environmental target.

Moreover, it has been fully recognized that our infrastructure needs to be more resilient to extreme loads imposed by natural hazards suchs as earthquakes, tsunamis and windstorms, as well as man-made hazards such as terrorist bombs and fires.

Construction materials and structures have an important role to play in sustainable and resilient development through efficient application, smart structural design, energy performance and durability. Developing new and modifying existing materials and structures is one approach to achieving a more sustainable and resilient building environment.

Our Research

Structures and construction materials play a vital role in our infrastructure. By efficient application of new and existing materials, smart structural design, and by improving energy performance and durability, structural engineering produces a more sustainable and resilient built environment. Such good design, which responds to the changing demands of society, requires structural engineering research.

Current activities within the structures group at Warwick focus on the characterisation of components, joints and whole structures of new and traditional materials (FRP, stainless-steel and novel concretes); multi-hazard assessment (fire, seismic, wind blast) of structures; and monitoring the behaviour of existing structures using integrated communication and sensor systems. Our research involves evaluation of results from full-sized and material-scale testing in our structures laboratories, advanced computational modelling, and the transfer of academic results into the drafting of standards, industry manuals and codes of practice, ensuring strong and synergetic links with end user groups.

Taking advantage of the closely integrated School of Engineering at Warwick, we have links with those working in data analysis, sensor development and energy use, allowing use to undertake research that cuts across traditional subject boundaries and to innovate in ways others cannot.

Our Group

Key phrases for research interests are provided with name of group member. For details of their research portfolio, current projects, national and international links and research opportunities go to their personal web-page using the link on the right-hand side of this page.

Dr Alan Bloodworth – Soil structures interaction for tunnelling and bridges, sprayed concrete tunnelling liners, concrete structures

Dr Sean Carroll - Human movement in crowds, human-structure interaction

Dr Georgia Kremmyda – Precast concrete, seismic design, civil engineering teaching

Dr Irwanda Laory - Structural health monitoring, damage detection, intelligent infrastructure, data interpretation methods, measurement system design and computer-aided engineering

Professor Wanda Lewis (Emeritus) – Form findings for optimal structural shape

Professor Toby Mottram - Fibre reinforced polymer shapes and systems, test methods, connections and joints, durability design, design standards for buildings and bridges

Dr Stana Zivanovic - Human behaviour and human-induced dynamic loading, structural identification, human-human and human-structure interactions and synchronisations, vibration serviceability and sustainable design

Our Projects

Civil Engineering Technicians (CET) Intranet with photographs showing the diversity of our projects.

Introductions to on-going research: