Skip to main content Skip to navigation

Roman Shantsila

PhD Title: (Inter)facing the Bitter Truth: How to Design Better Interfaces in Next-Gen Batteries using Atomistic Simulations Assisted by Machine-Learning

PhD Supervisor: Bora Karasulu

Lithium-Sulphur batteries (LSBs) are a promising alternative to Li-ion batteries (LIBs) as a next-gen energy storage technology, providing higher theoretical capacity at lower costs. Replacing the conventional liquid electrolytes with solid electrolytes (SE) helps mitigate the major LSB issues like the Li-polysulfide shuttle effect, and safety risks. Current SEs, however, degrade when coupled with a S-cathode, impeding the Li-ion conduction across their interfaces, limiting the battery performance. To design superior SE/S-cathode interfaces, this project focuses on atomistic simulations of the interfacial sulphide conversion chemistry in LSBs utilising state-of-the-art Density Functional Theory and machine learning methods, providing insights that are otherwise elusive to experimental characterisation techniques.

adsf