Papers
(Due to the shut down of Warwick unix servers, some of links below to pdf files do not work. I will fix this when I get a chance.)
- S.J. Benavides and D. Barkley,Model for transitional turbulence in a planar shear flow, (in review, still).
- E. Zuccoli, E.J. Brambley, and D. Barkley,Free Surface Waves for a Lamb-Oseen Vortex Flow, J. Fluid Mech. 997, A40 (2024) doi.org/10.1017/jfm.2024.645Link opens in a new window
- S.Gomé:, A. Riviere, L.S. Tuckerman, and D. Barkley,Phase transition to turbulence via moving fronts, Phys. Rev. Lett 132, 264002 (2024). doi.org/10.1103/PhysRevLett.132.264002.
- S.Gomé:, L.S. Tuckerman, and D. Barkley,Patterns in transitional shear turbulence. Part 1. Energy transfer and mean-flow interaction, J. Fluid Mech.964, A16 (2023).doi.org/10.1017/jfm.2023.288.
- S.Gomé:, L.S. Tuckerman, and D. Barkley,Patterns in transitional shear turbulence. Part 2. Emergence and optimal wavelength, J. Fluid Mech.964, A17 (2023).doi.org/10.1017/jfm.2023.289.
- M. Avila, D. Barkley, and B. HofTransition to Turbulence in Pipe Flow, Annu. Rev. Fluid Mech.55, 575 (2023)
- S.Gomé:, L.S. Tuckerman, and D. Barkley,Extreme events in transitional turbulence, Phil. Trans. R. Soc. A380, 20210036 (2022).https://doi.org/10.1098/rsta.2021.0036, (C) 2022 The Author(s) Published by the Royal Society
- D. Barkley,A fluid mechanic's analysis of the teacup singularity, Proc. R. Soc. A.476, 20200348 (2020).
- S.Gomé:, L.S. Tuckerman, and D. Barkley,Statistical transition to turbulence in plane channel flow, Phys. Rev. Fluids5, 083905 (2020).doi.org/10.1103/PhysRevFluids.5.083905, (C) 2020 American Physical Society
- L.S. Tuckerman, M. Chantry, and D. Barkley,Patterns in Wall-Bounded Shear Flows, Annu. Rev. Fluid Mec.52, 343 - 367 (2020). (C) 2020 Annual Reviews. A copy may be obtained from Annual Reviewshere
- D. Barkley,Taming turbulent fronts by bending pipes, J. Fluid Mech.872, 1-4 (2019).doi.org/10.1017/jfm.2019.340, (C) 2019 Cambridge University Press.
- T. Dessup, L.S. Tuckerman, J.E. Wesfreid, D. Barkley, A.P. Willis,Self-sustaining process in Taylor-Couette flow, Phys. Rev. Fluids3, 123902 (2018).doi.org/10.1103/PhysRevFluids.3.123902, (C) 2018 American Physical Society
- J. Langham, H. Bense, and D. Barkley,Modeling shape selection of buckled dielectric elastomers, J. Appl. Phys.123, 065102 (2018).doi:10.1063/1.5012848, (C) 2018 AIP Publishing.
- M. Chantry, L.S. Tuckerman and D. Barkley,Universal continuous transition to turbulence in a planar shear flow, J. Fluid Mech. 824, R1 (2017).doi:10.1017/jfm.2017.405, (C) 2017 Cambridge University Press.
- B. Song, D. Barkley, B. Hof, and M. Avila,Speed and structure of turbulent fronts in pipe flow, J. Fluid Mech. 813, 1045-1059 (2017).doi:10.1017/jfm.2017.14, (C) 2017 Cambridge University Press.
- D. Barkley,Theoretical perspective on the route to turbulence in a pipe, J. Fluid Mech. 803, P1 (2016).doi:10.1017/jfm.2016.465, (C) 2016 Cambridge University Press.
- M. Chantry, L.S. Tuckerman and D. Barkley,Turbulent-laminar patterns in shear flows without walls, J. Fluid Mech. 791, R8 (2016).doi:10.1017/jfm.2016.92, (C) 2016 Cambridge University Press. See also P. MannevilleTurbulent patterns made simple?.
- D. Barkley, B. Song, V. Mukund, G. Lemoult, M. Avila, and B. Hof,The rise of fully turbulent flow, Nature 526, 550-553 (2015). See also M.D. GrahamFluid dynamics: Turbulence spreads like wildfire.
- S.E. Turton, L.S. Tuckerman, and D. Barkley,Prediction of frequencies in thermosolutal convection from mean flows, Phys. Rev. E 91, 043009 (2015).pdf
- J. Langham, I.V. Biktasheva, and D. Barkley,Asymptotic dynamics of reflecting spiral waves, Phys. Rev. E 90, 062902 (2014).pdf
- J. Langham and D. Barkley,Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media, Chaos 23, 013134 (2013).pdf
- D. Barkley,Pipe flow as an excitable medium, Rev. Cub. Fis. 29, 1E27 (2012).
- D. Barkley, Modeling turbulent pipe flow (24MB), Slides from talk given July 19th 2011 at BIFD 2011, Barcelona.
- D. Barkley,Modeling the transition to turbulence in shear flows, J. Phys.: Conf. Ser. 318, 032001 (2011).
- D. Barkley,Simplifying the complexity of pipe flow, Phys. Rev. E 84, 016309 (2011).pdf
- K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, Bjorn Hof, The Onset of Turbulence in Pipe Flow, Science 333, 192-196 (2011).pdf,SOM.
- L. S. Tuckerman and D. BarkleyPatterns and dynamics in transitional plane Couette flow, Phys. Fluids 23, 041301 (2011).
- C. Marais, R. Godoy-Diana, D. Barkley, and J. E. Wesfreid,Convective instability in inhomogeneous media: Impulse response in the subcritical cylinder wake, Phys. Fluids 23, 014104 (2011).
- A.J. Foulkes, D. Barkley, V.N. Biktashev, I.V. Biktasheva,Alternative Stable Scroll Waves and Conversion of Autowave Turbulence, Chaos 20, 043136 (2010).
- C.D. Cantwell and D. Barkley, Computational study of subcritical response in flow past a circular cylinder, Phys. Rev. E 82, 026315 (2010).
- I.V. Biktasheva, D. Barkley, V.N. Biktashev, A.J. Foulkes, Computation of the Drift Velocity of Spiral Waves using Response Functions, Phys. Rev. E 81, 066202 (2010).
- D. Moxey and D. Barkley,Distinct large-scale turbulent-laminar states in transitional pipe flow, PNAS 107, 8091-8096 (2010).
- L. Bordja, L.S. Tuckerman, L. Martin Witkowski, M.C. Navarro, D. Barkley, R. Bessiah, Influence of counter-rotating von Karman flow on cylindrical Rayleigh-Benard convection, Phys. Rev. E 81, 036322 (2010). Version corrected on page 8 to incorporate Erratum: Phys. Rev. E 81, 069903 (2010).
- C.D. Cantwell, D. Barkley, H.M. Blackburn, Transient growth analysis of flow through a sudden expansion in a circular pipe, Phys. Fluids22, 034101 (2010).
- V.N. Biktashev, D. Barkley, I.V. Biktasheva, Orbital motion of spiral waves in excitable media, Phys. Rev. Lett.104, 058302 (2010).
- I.V. Biktasheva, D. Barkley, V.N. Biktashev, G.V. Bordyugov, and A.J. Foulkes, Computation of the response functions of spiral waves in active media, Phys. Rev. E79, 056702 (2009).
- H.M. Blackburn, S.J. Sherwin, and D. Barkley, Convective instability and transient growth in steady and pulsatile stenotic flows, J. Fluid Mech. 607, 267-277 (2008).
- D. Barkley, H.M. Blackburn, and S.J. Sherwin, Direct optimal growth analysis for timesteppers, Int. J. Numer. Meth. Fluids 57, 1435-1458 (2008).
- H.M. Blackburn, D. Barkley, and S.J. Sherwin, Convective instability and transient growth in flow over a backward-facing step, J. Fluid Mech. 603, 271-304 (2008).
- D. Barkley, Barkley Model, Scholarpedia - The free peer reviewed encyclopedia, 3(11):1877 (2008).
- D. Barkley and L.S. Tuckerman, Mean flow of turbulent-laminar patterns in plane Couette flow, J. Fluid Mech.576, 109-137 (2007).
- D. Barkley, Linear analysis of the cylinder wake mean flow,Europhys. Lett. 75, 750 - 756 (2006).
- D. Barkley, I.G. Kevrekidis and A.M. Stuart, The Moment Map: Nonlinear dynamics of density evolution via a few moments,SIADS 5, 403 - 434 (2006).
- P. Wheeler and D. Barkley, Computation of Spiral Spectra, SIADS 5, 157 - 177 (2006).
- D. Barkley and L.S. Tuckerman, Computational study of turbulent-laminar patterns in Couette flow, Phys. Rev. Lett. 94, 014502 (2005).
- D. Barkley, Confined three-dimensional stability analysis of the cylinder wake, Phys. Rev. E. 71, 017301 (2005).
- D. Barkley and L.S. Tuckerman, Turbulent-laminar patterns in plane Couette flow,BibTex, Presented at: Symposium on Non-Uniqueness of Solutions to the Navier-Stokes Equations and Their Connection with Laminar-Transition, AUG 09-11, 2004 Bristol, ENGLAND. Citation Source: IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, Book Series: FLUID MECHANICS AND ITS APPLICATIONS,77, 107-127 (2005)
- L.S. Tuckerman and D. Barkley, Symmetry breaking and chaos in perturbed plane Couette flow, Theoretical and Computational Fluid Dynamics 16, 91-97 (2002).
- D. Barkley, M.G.M. Gomes, and R.D. Henderson, Three-dimensional instability in flow over a backward-facing step, J. Fluid Mech. 473, 167-190 (2002).
- D. Margerit and D. Barkley, Cookbook asymptotics for spiral and scroll waves in excitable media, Chaos 12, 636-649 (2002).
- D. Margerit and D. Barkley, Large-excitability asymptotics for scroll waves in three-dimensional excitable media, Phys. Rev. E 66, 036214 (2002).
- D. Margerit and D. Barkley, Selection of twisted scroll waves in three-dimensional excitable media, Phys. Rev. Lett. 86, 175-178 (2001).
- R.M Mantel and D. Barkley, Parametric forcing of scroll-wave patterns in three-dimensional excitable media, Physica D149, 107-122 (2001).
- G. Duckett and D. Barkley, Modeling the dynamics of cardiac action potentials, Phys. Rev. Lett. 85, 884-887 (2000).
- D. Barkley, L. S. Tuckerman, and M. Golubitsky, Bifurcation theory for three-dimensional flow in the wake of a circular cylinder, Phys. Rev. E 61, 5247-5252 (2000).
- L.S. Tuckerman and D. Barkley, Bifurcation analysis for Timesteppers,BibTex, inNumerical Methods for Bifurcation Problems and Large-Scale Dynamical Systemsed. by E. Doedel and L.S. Tuckerman,IMA Volumes in Mathematics and its Applications, vol. 119, pp. 543-466 (Springer, New York, 2000). Presented at: Workshop on Numerical Methods for Large-Scale Dynamical Systems, SEP 29-OCT 03, 1997 MINNEAPOLIS, MN
- D. Barkley and L.S. Tuckerman, Stability analysis of perturbed plane Couette flow, Phys. Fluids 111187-1195 (1999).
- M.Dowle, R.M. Mantel and D. Barkley, Fast simulations of waves in three-dimensional excitable media, Int. J. Bif. Chaos 7, 2529-2546 (1997).
- D. Barkley and L.S. Tuckerman, Stokes preconditioning for the inverse power method,in15th International Conference on Numerical Methods in Fluid Dynamicsed. by J.C. Chattot (Springer, New York, 1997).
- R.M. Mantel and D. Barkley, Periodic forcing of spiral waves in excitable mediaLink opens in a new window, Phys. Rev. E 54, 4791-4802 (1996).
- D. Barkley and R.D. Henderson, Floquet stability analysis of the periodic wake of a circular cylinderLink opens in a new window, J. Fluid Mech. 322, 215-241 (1996).
- R.D. Henderson and D. Barkley, Secondary instability in the wake of a circular cylinderLink opens in a new window, Phys. Fluids 8, 1683-1685 (1996).
- D. Barkley, Spiral MeanderingLink opens in a new window, in Chemical Waves and Patterns, edited by R. Kapral and K. Showalter, (Kluwer, 1995) p. 163.This is a difficult-to-obtain review of spiral meandering
- M.F. Schatz, D. Barkley, and H.L. Swinney, Instabilities in spatially periodic channel flowLink opens in a new window, Phys. Fluids 7, 344-358 (1995).
- D. Barkley and I.G. Kevrekidis, A dynamical systems approach to spiral-wave dynamicsLink opens in a new window, Chaos 4, 453-460 (1994).
- D. Barkley, Euclidean symmetry and the dynamics of rotating spiral wavesLink opens in a new window, Phys. Rev. Lett. 72,164-167 (1994).
- M. Kness, L.S. Tuckerman, and D. Barkley, Symmetry-breaking bifurcations in one-dimensional excitable mediaLink opens in a new window, Phys. Rev. A 46, 5054-5062 (1992).
- D. Barkley, Linear stability analysis of spiral waves in excitable mediaLink opens in a new window, Phys. Rev. Lett. 68, 2090-2093 (1992).
- D. Barkley, A model for fast computer simulation of waves in excitable mediaLink opens in a new window, Physica 49D, 61-70 (1991).
- L.S. Tuckerman and D. Barkley, Bifurcation analysis of the Eckhaus instabilityLink opens in a new window, Physica 46D, 57-86 (1990).
- D. Barkley, Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flowLink opens in a new window, Phys. Fluids A 2, 955-970 (1990).
- D. Lindberg, J.S. Turner, and D. Barkley, Chaos in the Showalter-Noyes-BarEli model of the Belousov-Zhabotinskii reactionLink opens in a new window, J. Chem. Phys. 92, 3238-3239 (1990).
- D. Barkley, M. Kness, and L. S. Tuckerman, Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotationLink opens in a new window, Phys. Rev. A 42, 2489-2492 (1990).
- D. Barkley and A. Cumming, Thermodynamics of the quasiperiodic parameter set at the borderline of chaos: experimental resultsLink opens in a new window, Phys. Rev. Lett. 64, 327-331 (1990).
- D. Barkley and L.S. Tuckerman, Traveling waves in axisymmetric convection: the role of sidewall conductivityLink opens in a new window, Physica D 37, 288-294 (1989).
- D. Barkley, Near-critical behavior for one-parameter families of circle mapsLink opens in a new window, Phys. Lett. A 129, 219-222 (1988).
- L.S. Tuckerman and D. Barkley, Global bifurcation to travelling waves in axisymmetric convectionLink opens in a new window, Phys. Rev. Lett. 61, 408-411 (1988).
- D. Barkley, Slow manifolds and mixed-mode oscillations in the Belousov-Zhabotinskii reactionLink opens in a new window, J. Chem. Phys. 89, 5547-5559 (1988).
- D. Barkley, J. Ringland, and J.S. Turner, Observations of a torus in a model of the Belousov-Zhabotinskii reactionLink opens in a new window, J. Chem. Phys. 87, 3812-3820 (1987).