Publications and preprints
Publications:
[21] A.J. Nugent, S.N. Gomes, M.-T, Wolfram, Steering opinion dynamics through control of social networks, Chaos, 34, 073109, 2024 (arxiv, open access).
[20] R. Bailo, A. Barbaro, S.N. Gomes, K. Riedl, T. Roith, C. Totzeck, U. Vaes, CBX: Python and Julia packages for consensus-based interacting particle methods, Journal of Open Source Software 9(98):6611, 2024 (arxiv, open access).
[19] A.J. Nugent, S.N. Gomes, M.-T, Wolfram, Bridging the gap between agent based models and continuous opinion dynamics, Physica A, 129886, 2024 (arxiv, open access).
[18] O.A. Holroyd, R. Cimpeanu, and S.N. Gomes, Stabilisation of falling liquid films with restricted observations, Proceedings of the European Control Conference, 2024 (arxiv, link).
[17] O.A. Holroyd, R. Cimpeanu, S.N. Gomes, Linear quadratic regulation control for falling liquid films, SIAM Journal of Applied Mathematics 84(3): 940-960, 2024 (arxiv, link).
[16] A.J. Nugent, S.N. Gomes, M.-T. Wolfram, On evolving network models and their influence on opinion formation, Physica D - Nonlinear Phenomena, 456, 133914, 2023 (arxiv, open access).
[15] A.W. Wray, R. Cimpeanu, S.N. Gomes, Electrostatic control of the Navier–Stokes equations for thin films, Physical Review Fluids, 7:L122001, 2022 (arxiv, link)
[14] R. Dutta, S.N. Gomes, D. Kalise, L. Pacchiardi, Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic, PLOS Computational Biology, 17(8):e1009236, 2021 (arxiv, open access)
[13] R. Cimpeanu, S.N. Gomes, D.T. Papageorgiou, Active control of liquid film flows: beyond reduced-order models, Nonlinear Dynamics, 104(1):267-287, 2021. (arxiv, open access).
[12] S.N. Gomes, G.A. Pavliotis, U. Vaes, Mean-field limits for interacting diffusions with colored noise: phase transitions and spectral numerical methods, Multiscale Modeling and Simulation, 18(3), 1343–1370, 2020. (arxiv, link);
[11] R.J. Tomlin, S.N. Gomes, Point-actuated feedback control of multidimensional interfaces, IMA Journal of Applied Mathematics, 84:1112-1142, 2019 (open access).
[10] A.B. Thompson, S.N. Gomes, F. Denner, M.C. Dallaston, S. Kalliadasis, Robust low-dimensional modelling of falling liquid films subject to variable wall heating, Journal of Fluid Mechanics 877:844-881, 2019 (open access);
[9] S.N. Gomes, A.M. Stuart, M.T. Wolfram, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM Journal on Applied Mathematics 79(4):1475-1500, 2019 (link, arxiv);
[8] S.N. Gomes, S. Kalliadasis, G.A. Pavliotis, P. Yatsyshin, Dynamics of the Desai-Zwanzig model in multi-well and random energy landscapes, Physical Review E, 99: 032109, 2019 (link, arxiv);
[7] R.J. Tomlin, S.N. Gomes, G.A. Pavliotis, D.T. Papageorgiou, Optimal control of thin liquid films and transverse mode effects, SIAM Journal on Applied Dynamical Systems, 18(1): 117–149, 2019 (open access);
[6] S.N. Gomes, G.A. Pavliotis, Mean field limits for interacting diffusions in a two-scale potential, Journal of Nonlinear Science 28(3): 905-941, 2018. (open access);
[5] S.N. Gomes, S. Kalliadasis, D.T. Papageorgiou, G.A. Pavliotis, M. Pradas, Controlling roughening processes in the stochastic Kuramoto-Sivashinsky equation, Physica D-nonlinear Phenomena, 348: 33-43, 2017. (open access);
[4] S.N. Gomes, D.T. Papageorgiou, G.A. Pavliotis, Stabilizing non-trivial solutions of the generalized Kuramoto-Sivashinsky equation using feedback and optimal control, IMA Journal of Applied Mathematics, 82(1): 158-194, 2017. (free access);
[3] S.N. Gomes, S.J. Tate, On the numerical solution of a T-Sylvester type matrix equation arising in the control of stochastic partial differential equations, IMA Journal of Applied Mathematics, 82(6): 1192-1208, 2017. (open access);
[2] A.B. Thompson, S.N. Gomes, G.A. Pavliotis, D.T. Papageorgiou, Stabilising falling liquid film flows using feedback control, Physics of Fluids, 28: 012107, 2016. (link, arxiv link);
[1] S.N. Gomes, M. Pradas, S. Kalliadasis, D.T. Papageorgiou, G.A. Pavliotis, Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems, Physical Review E 92: 022912, 2015 (link, pdf).