Skip to main content Skip to navigation

Publications from JMM since 2018

  1. G. Singh, J. Gillham and J. M. Marshall Novel radiation dense materials: Reactive Sintered Borides. International Journal of Refractory Metals and Hard Materials (2025) https://doi.org/10.1016/j.ijrmhm.2025.107074
  2. S. Srinivasan, J. Gillham and J. M. Marshall Overview of the thermomechanical behaviour of brazed W/cWC/RSB/steel joints for fusion applications. Iron and Steelmaking (2025)
  3. J. M. Marshall, G. Singh, S. Srinivasan and J. Gillham TEM studies of radiation-induced stress changes in low-activation cWC. International Journal of Refractory Metals and Hard Materials. 128 (2025) https://doi.org/10.1016/j.ijrmhm.2024.107002Link opens in a new window
  4. S. Srinivasan, J. Gillham and J. M. Marshall High-Density Radiation Shielding Of Cwc-RSB Composite For Fusion Reactor: A Critical Review. Euro Powder Metallurgy 2024 Congress & Exhibition (2024) DOI:10.59499/EP246283660Link opens in a new window
  5. S. Srinivasan, J. Gillham and J. M. Marshall Development of High-Temperature Brazing of cWC/RSB to Steel Joints for Fusion Reactor. Euro Powder Metallurgy 2024 Congress & Exhibition (2024) DOI:10.59499/EP246283792Link opens in a new window
  6. G. Singh, J. Gillham and J. M. Marshall. Physical properties of Radiation Dense Reactive Sintered Borides. Ceramics International (2024) https://doi.org/10.1016/j.ceramint.2024.
  7. S. Srinivasan, J. Gillham, G. Singh and J. M. Marshall. Tungsten carbide for radiation shielding: A comprehensive review. Proceedings of EuroPM2023 Session 11: Energy (2023) https://doi.org/10.59499/EP235765427
  8. J. M. Marshall and G. Singh. Synthesis studies of radiation-dense Reactive Sintered Borides (RSB) nuclear shielding materials. Materials Communications Today. 36 (2023) 106765 https://doi.org/10.1016/j.mtcomm.2023.106765Link opens in a new window
  9. J. M. Marshall and G. Singh. Proton and gamma irradiation of novel tungsten boride and carbide candidate shielding materials. Fusion Engineering and Design 193 (2023) 113667. DOI:10.1016/j.fusengdes.2023.113667Link opens in a new window
  10. J. M. Marshall, F.Tang, Y. Han, P.A.J. Bagot and M.P. Moody. Multi-Scale Microscopy of Reactive Sintered Boride (RSB) Neutron Shielding Materials. Journal of Nuclear Materials and Energy 33 (2022) 101285 https://doi.org/10.1016/j.nme.2022.101285

  11. Marshall, J., Walker, D. & Thomas, P. Non-ambient X-ray and neutron diffraction of novel relaxor ferroelectric xBi2(Zn2/3,Nb1/3)O7–(1 – x)BaTiO3 (2021). J. Appl. Cryst. 54, https://doi.org/10.1107/S160057672100858X
  12. J. M. Marshall, D. Walker and P.A. Thomas, Bismuth zinc niobate: BZN-BT, a new lead-free BaTiO3-based ferroelectric relaxor? Journal of Advanced Dielectrics 10 (6) 2020 2050033
  13. J. M. Marshall, D. Walker and P.A. Thomas, HRXRD study of the Theoretical Densities of Novel Reactive Sintered Boride Candidate Neutron Shielding Materials. Journal of Nuclear Materials and Energy. 22 (2020) 100732 732 https://doi.org/1016/j.nme.2020.100732
  14. S. Humphry-Baker and J. Marshall, Structure and properties of high-hardness silicide coatings on cemented carbides for high-temperature applications Coatings 8 (7) 247 (2018) https://doi.org/10.3390/coatings8070247Link opens in a new window
  15. C. G. Windsor, J.M. Marshall, J.G. Morgan, J. Fair, G.D.W Smith, A Rajczyk-Wryk and José María Tarragó, Design of cemented tungsten carbide and boride-containing shields for a fusion power plant. Nuclear Fusion 58 (7), 076014 (2018) https://doi.org/10.1088/1741-4326/aabdb0Link opens in a new window
  16. J. M. Marshall, EP3401413A1 “An iron tungsten borocarbide body for nuclear shielding applications,” (2018). https://doi.org/10.13140/RG.2.2.34460.13447Link opens in a new window
  17. J.M. Marshall, Agata Rajczyk-Wryk and Alexander Hirsch EP3401414A1. “Cemented carbides comprising a Fe-Cr binder metallic binder” (2018). https://doi.org/10.13140/RG.2.2.34460.13447.
  18. J. M. Marshall and G. Sweetman, Patent EP3398703A1. “A body comprising a cermet part and a method for the manufacturing thereof” (2018) https://doi.org/10.13140/RG.2.2.27749.24803