Skip to main content Skip to navigation

Taught Programme

Module 1: Novel and Efficient Methods of Material Synthesis

Module Teachers: Prof Mark Newton, Dr Claire Hurley

Although diamond is the focus, this module will include details about the properties, deposition, fabrication and applications of a range of advanced modern materials, such as CNTs, cBN, GaN, ZnO, etc. The module has been broken down into small lecture/workshop components so that the students will gain a working knowledge of many of the advanced modern materials in use by UK science & technology industries, as well as their synthesis/fabrication, properties, and applications. As well as lectures, there will be some interactive practicals and workshops based on the course material.

Module 2: Defects and Dopants

Module Teacher: Prof Mark Newton

This course bridges the gap between undergraduate courses on materials and research-level reviews. It is designed for workers new to the field of defects and dopants in semiconductors and insulators. In undergraduate texts we are introduced to the concept of a perfect crystalline solid with every atom in its proper place in an infinite crystal. This is a convenient first step in developing the concept of electronic band structure and from it deducing the general electronic and optical properties of crystalline solids. However, such an idealization can be grossly misleading. A perfect crystal does not exist. There are always defects; crystals are like people it is the defects that make them interesting! Defects often have a profound effect on the real physical properties of a solid, and a major part of scientific research on materials has been devoted to the study of defects. We now know that most of the interesting and important properties of solids – electrical, optical and mechanical – are determined not so much by the properties of the perfect crystal as by its imperfections. There is no better example of the vital role played by defects than those found in semiconductors, where the ability to control the electrical conductivity by the addition of trace impurities to otherwise highly perfect crystals enabled a technological revolution.

The course covers the identification of intrinsic, defects, dopants and impurities in semiconductors and insulators with a specific focus on diamond. Once the different types of defects have been introduced it follows an approach whereby different characterisation techniques are introduced and the information which they reveal about the properties of defects/impurities are explained by reference to the measurements made on them.

Module 3: Devices and Fabrication

Module Teachers: Dr Ben Green, Dr Claire Hurley

This module aims to cover the basics of clean room technologies and device fabrication. The specifics of diamond processing will be addressed in context with silicon technologies. The operation of basic semiconductor devices will be explained.

Module 4: Diamond Photonics and Quantum Devices

Module Teacher: Dr Gavin Morley

Students will achieve a basic grounding in the physics and application of quantum devices based on nitrogen vacancy centres (NVC) in diamond. They will learn about principles of operation; advantages and challenges of diamond; device design and manufacture. They will gain practical experience in optics and spintronics experiments. There will be a focus on single NVC for quantum computing and magnetometry.

Module 5: Applications of High Performance Materials

Module Teacher: Dr Claire Hurley

This module aims to promote an appreciation for the wider context of DST: the applications, alternative materials, and competitor technologies. Students will be encouraged to collate and critically analyse a body of scientific work and practice presenting this information to a variety of audiences.