Skip to main content Skip to navigation

Publication

Note. *,+,andindicate corresponding author, authors with equal contributions, and the lead theory author, respectively.

92.Zero‐Bias Anti‐Ohmic Behaviour in Diradicaloid Molecular Wires, A Sil, L Hamilton, J MF Morris, A HS Daaoub, JHH Burrows, CM Robertson, K Luzyanin, SJ Higgins, H Sadeghi, RJ Nichols,Sara Sangtarash*,and A Vezzoli,Angewandte Chemie International Edition, pp. e202410304, 2024. DOI:10.1002/anie.202410304.

91.An Orthogonal Conductance Pathway in Spiropyrans for Well-Defined Electrosteric Switching Single-Molecule Junctions, D Jago, C Liu, AHS Daaoub, E Gaschk, MC Walkey, T Pulbrook, X Qiao, AN Sobolev, AA Moggach, D Costa-Milan, SJ Higgins, MJ Piggott, H Sadeghi, RJ Nichols,Sara Sangtarash*, A Vezzoli, GA Koutsantonis,Small, Vol. 20, pp. 2306334, 2024. DOI:10.1002/smll.202306334.

90.Nuclear Magnetic Resonance Chemical Shift as a Probe for Single-Molecule Charge Transport, AX Qiao+, A Sil+,Sara Sangtarash†+*,S Smith, C Wu, CM Robertson, RJ Nichols, SJ Higgins, H Sadeghi and A Vezzoli,Angewandte Chemie International Edition, pp. e202402413, 2024. DOI:10.1002/anie.202402413.

89.Single‐Molecule Mechanoresistivity by Intermetallic Bonding, A Sil, CE Spano, Y Chelli, SJ Higgins,Sara Sangtarash, et. al.,Angewandte Chemie International Edition, pp. e202418062, 2024. DOI:10.1002/anie.202418062.

88.Thermopower in Underpotential Deposition Based Molecular Junctions, P He, A Daaoub,Sara Sangtarash, et al,Nano Letters, Vol. 24, no. 6, pp. 1988–1995, 2024. DOI:10.1021/acs.nanolett.3c04438.

87.Mechanical Manipulation of Quantum Interference in Single‐Molecule Junctions, A Sil, M Alsaqer, C E Spano, A Larbi, SJ Higgins, CM Robertson, M Graziano,Sara Sangtarash, et al.,Small, pp. 2308865, 2024. DOI:10.1002/smll.202308865.

86.Exploring the Impact of the HOMO–LUMO Gap on Molecular Thermoelectric Properties: A Comparative Study of Conjugated Aromatic, Quinoidal, and Donor–Acceptor Core Systems, N Blankevoort, P Bastante, R J. Davidson, RJ Salthouse, A Daaoub, P Cea, S Martin, AS Batsanov,Sara Sangtarash, MR Bryce, N Agrait, and H Sadeghi,ACS Omega, Vol. 9, no. 7, pp. 8471–8477, 2024. DOI:10.1021/acsomega.3c09760

85.Not So Innocent After All: Interfacial Chemistry Determines Charge-Transport Efficiency in Single-Molecule Junctions, A Daaoub, JMF Morris, VA Béland, P Demay-Drouhard, A Hussein, SJ Higgins, H Sadeghi, RJ Nichols, A Vezzoli, T Baumgartner,Sara Sangtarash*,Angewandte Chemie International Edition, Vol. 62, pp. e202302150, 2023. DOI: 10.1002/anie.202302150

84.An Orthogonal Conductance Pathway in Spiropyrans for Well-Defined Electrosteric Switching Single-MoleculeJunctions, D Jago, C Liu, AHS Daaoub, E Gaschk, MC Walkey,T Pulbrook, X Qiao, AN Sobolev, SA Moggach, D Costa-Milan, SJ Higgins, MJ Piggott, H Sadeghi, RJ Nichols,Sara Sangtarash*, A Vezzoli, and AA Koutsantonis,Small, Vol. , no. , pp. 2306334, 2023. DOI: 10.1002/smll.202306334.

83.Single-Molecule Conductance Behavior of Molecular Bundles, A Bara-Estaún, I Planje, R Almughathawi, S Naghibi, A Vezzoli, DC Milan, C Lambert, S Martin, P Cea, RJ Nichols, SJ Higgins, DS Yufit,Sara Sangtarash*, RJ Davidson, and A Beeby,Inorganic Chemistry, Vol. 62, no. 51, pp. 20940–20947, 2023. DOI: 10.1021/acs.inorgchem.3c01943

82.Ordered Arrays of Gold Nanoparticles Crosslinked by Dithioacetate Linkers for Molecular Devices, M Asaad, A Vezzoli, A Daaoub, J Borowiec, E Pyurbeeva, H Sadeghi,Sara Sangtarash*, S Higgins and J Mol,Journal of Materials Chemistry C, Vol. 11, no. 16, pp. 5431-5437, 2023. DOI: 10.1039/D3TC00145H.

81.Large Mechanosensitive Thermoelectric Enhancement in Metallo-Organic Magnetic Molecules, M Alsaqer, AHS Daaoub,Sara Sangtarash*, and H Sadeghi,Nano Letters, Vol. 23, no. 23, pp. 10719–10724, 2023. DOI: 10.1021/acs.nanolett.3c02569.

80.Influence of Environmental Fluctuations on Quantum Interference in Naphthalene and Azulene, J Alqahtani,Sara Sangtarash, and H Sadeghi,Small Science, Vol. 3, pp. 2300075, 2023. DOI: 10.1002/smsc.202300075.

79.Controlling Spin Interference in Single Radical Molecules, Y Chelli, S Sandhu, AHS Daaoub,Sara Sangtarash, and H Sadeghi,Nano Letters, Vol. 23, no. 9, pp. 3748–3753, 2023. DOI: 10.1021/acs.nanolett.2c05068.

78.Supramolecular Radical Electronics, T Gao, A Daaoub, Z Pan, Y Hu, S Yuan, Y Li, G Dong, R Huang, J Liu,Sara Sangtarash, J Shi, Y Yang, H Sadeghi, and W Hong,Journal of the American Chemical Society (JACS), Vol. 145, no. 31, pp. 17232–17241, 2023. DOI: 10.1021/jacs.3c04323.

77.Atomically Well-defined Nitrogen Doping in the Cross-plane Transport through Graphene Heterojunctions, H Zhang, P Zhou, A Daaoub,Sara Sangtarash, et al.,Chemical Science, Vol. 14, no. 22, pp. 6079-6086, 2023. DOI: 10.1039/D3SC00075.

76.Contacting individual graphene nanoribbons using carbon nanotube electrodes, J Zhang, L Qian, GB Barin, A Daaoub, P Chen, K Müllen,Sara Sangtarash, et al.,Nature Electronics, Vol. 6, pp. 572–581, 2023. DOI: 10.1038/s41928-023-00991-3

75.Connectivity dependent conductance of 2,2′-bipyridine based metal complexes, Y Chelli, N Ferri, A Vezzoli, R Davidson, J Morris, R Nichols, SJ Higgins,Sara Sangtarash, et al.,ACS Omega, Vol. 8, no. 51, pp. 48958–48965, 2023. DOI: 10.1021/acsomega.3c06555.

74.Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multi-Gate Architecture, J Zhang, O Braun, GB Barin,Sara Sangtarash†, et al.,Advanced Electronic Materials, Vol. 9, no. 4, pp. 2201204, 2023. DOI: 10.1002/aelm.202201204.

73.Redox-addressable single-molecule junctions incorporating a persistent organic radical, S Naghibi+,Sara Sangtarash†+, et al.,Angewandte Chemie International Edition, Vol. 61, pp. e2021169, 2022. DOI: 10.1002/anie.202116985

72.2,7– and 4,9–Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties and Charge Transport in Single Molecule Junctions, M Roemer, A Gillespie, D Jago, D Costa-Milan, J Alqahtani, J Hurtado-Gallego, H Sadeghi, CJ Lambert, PR Spackman, AN Sobolev, BW Skelton, A Grosjean, M Walkey, S Kampmann, A Vezzoli, PV Simpson, M Massi, I Planje, G Rubio-Bollinger, N Agraït, SJ Higgins,Sara Sangtarash*, MJ Piggott, RJ Nichols, GA Koutsantonis,Journal of the American Chemical Society (JACS), Vol. 144, no. 28, pp. 12698–12714, 2022. DOI: 10.1021/jacs.2c02289

71.Thermoelectric Enhancement in Single Organic Radical Molecules, J Hurtado-Gallego+,Sara Sangtarash†+, et al.,Nano Letters, Vol. 22, no. 3, pp. 948–953, 2022. DOI: acs.nanolett.1c03698

70.Intermolecular interaction enhances thermoelectric performance of molecular junctions, A Daaoub, R Wang, R Davidson,Sara Sangtarash, H Sadeghi, 2022. pre-print DOI: arXiv: 2212.06537

69.Vibrational Stark Effects: Ionic Influence on Local Fields, D Wright,Sara Sangtarash†, NS Mueller, Q Lin, H Sadeghi, and JJ Baumberg,The Journal of Physical Chemistry Letters, Vol. 13, no. 22, pp. 4905–4911, 2022. DOI: 10.1021/acs.jpclett.2c01048

68.Low Thermal Conductivity in Franckeite Heterostructures, J Spièce,Sara Sangtarash†, et al.,Nanoscale (Communication), Vol. 14, no. 7, pp. 2593-2598, 2022. DOI: 10.1039/D1NR07889E

67.Scaling of Quantum Interference from Single Molecules to Molecular Cages and their Monolayers, X Xua, J Wanga, N Blankevoortb, A Daaoub,Sara Sangtarash, et al.,Proceedings of the National Academy of Sciences (PNAS), Vol. 119, no. 46, pp. e2211786119, 2022. DOI: 10.1073/pnas.2211786119

66.Engineering Transport Orbitals in Single-Molecule Junctions, A Daaoub, L Ornago, D Vogel, P Bastante,Sara Sangtarash, et al.,Journal of Physical Chemistry Letters, Vol. 13, pp. 9156–9164, 2022. DOI: 10.1021/acs.jpclett.2c01851

65.Thermoelectric properties of organic thin films enhanced by π-π stacking, X Wang,Sara Sangtarash†, et al.,Journal of Physics: Energy, Vol. 4, pp. 024002, 2022. DOI: 10.1088/2515-7655/ac55a3

64.Engineering the transport orbital in a molecular nanoscale junction, L Ornago, A Daaoub, D Vogel,Sara Sangtarash, M Mayor, H van der Zant and H Sadeghi, APS March Meeting 2022, March 14–18, 2022, Chicago, USA.

63.Dual attenuation factor in nanographene molecular wires,Sara Sangtarash*. Pre-print DOI: arXiv:2102.09936, 2021

62.Reversible Switching between Destructive and Constructive Quantum Interference Using Atomically Precise Chemical Gating of Single-Molecule Junctions, C Tang+, L Huang+,Sara Sangtarash†+, et al., Journal of the American Chemical Society (JACS), Vol. 143, no. 25, pp. 9385–9392, 2021. DOI: 10.1021/jacs.1c00928

61.Heteroatom Effects on Quantum Interference in Molecular Junctions: Modulating Antiresonances by Molecular Design, LJ O’Driscoll,Sara Sangtarash†, et.al.,The Journal of Physical Chemistry C, Vol. 125, no. 31, pp. 17385–17391, 2021. DOI: 10.1021/acs.jpcc.1c04242

60.The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions, M Noori,Sara Sangtarashand H Sadeghi,Applied Sciences, Vol. 11, pp. 1066, 2021. DOI: 10.3390/app11031066

59.Selective Anchoring Groups for Molecular Electronic Junctions with ITO Electrodes, IJ Planje, RJ Davidson, A Vezzoli, A Daaoub,Sara Sangtarash, et. al.,ACS SensorsVol. 6, No. 2, pp. 530–537, 2021. DOI: 10.1021/acssensors.0c02205

58.Quantized thermal and thermoelectric transport along single molecule junctions, A Gemma, H Dekkiche, N Mosso, U Drechsler,Sara Sangtarash†, et al., APS March Meeting 2021, March 15–19, 2021; Virtual, USA.

57.Device Integration of Atomically precise Graphene Nanoribbons, O Braun, J Overbeck, M Perrin, GB Barin, M El Abbassi, Q Sun,Sara Sangtarash†, et al., APS March Meeting 2021, March 15–19, 2021; Virtual, USA.

56.A Peierls Transition in Long Polymethine Molecular Wires: Evolution of Molecular Geometry and Single-Molecule Conductance, W Xu, E Leary,Sara Sangtarash, et al.,Journal of the American Chemical Society (JACS)Vol. 143, no. 48, pp. 20472–20481, 2021. DOI: 10.1021/jacs.1c10747

55.Radical Enhancement of Molecular Thermoelectric Efficiency,Sara Sangtarash†, H Sadeghi,Nanoscale Advances (Communication), Vol. 2, No. 3, pp. 1031-1035, 2020, DOI: 10.1039/C9NA00649D

54.Folding a Single-Molecule Junction, C Wu+, D Bates+,Sara Sangtarash+, et al.,Nano Letters, Vol. 20, No. 11, pp. 7980–7986, 2020, DOI: 10.1021/acs.nanolett.0c02815

53.Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors, ME Abbassi, ML Perrin, GB Barin,Sara Sangtarash, et al.,ACS Nano, Vol. 14, No. 5, pp. 5754–5762, 2020, DOI: 10.1021/acsnano.0c00604

52.Optical probes of molecules as nano-mechanical switches, D Kos, GD Martino, A Boehmke, B de Nijs, D Berta, T Földes,Sara Sangtarash, E Rosta, H Sadeghi and JJ Baumberg,Nature CommunicationsVol. 11, pp. 5905, 2020. DOI: 10.1038/s41467-020-19703-y

51.Switching Quantum Interference in Phenoxyquinone Single Molecule Junction with Light, A Daaoub,Sara Sangtarashand H Sadeghi,Nanomaterials, Vol. 10, No. 8, pp. 1544, 2020, DOI: 10.3390/nano10081544

50.Bottom-up Synthesis of Nitrogen-doped Porous Graphene Nanoribbons, R Pawlak, X Liu, S Ninova, P d'Astolfo, C Drechsel,Sara Sangtarash, et al.,Journal of the American Chemical Society (JACS), Vol. 142, No. 29, pp. 12568–12573, 2020, DOI: 10.1021/jacs.0c03946

49.In situ formation of H-bonding imidazole chains in break-junction experiments, C Wu, A Alqahtani,Sara Sangtarash*, et al.,Nanoscale, Vol. 12, No. 14, pp. 7914-7920, 2020, DOI: 10.1039/D0NR00630K

48.Spin driven enhancement of single molecule thermoelectric efficiency,Sara Sangtarash, H Sadeghi, Single-Molecule Sensors and NanoSystems International Conference (S3IC2020), 9-11 Nov. 2020, Barcelona, Spain

47.Robust graphene-based molecular devices, ME Abbassi,Sara Sangtarash, et al.,Nature Nanotechnology, Vol. 14, No. 10, pp. 957-961, 2019, DOI: 10.1038/s41565-019-0533-8

46.Turning the Tap: Conformational Control of Quantum Interference to Modulate Single Molecule Conductance, F Jiang, D Trupp, N Algethami, H Zheng, W He, A Alqorashi, C Zhu, C Tang, R Li, J Liu, H Sadeghi, J Shi, R Davidson, M Korb, M Naher, AN Sobolev,Sara Sangtarash*, PJ Low, W Hong, C Lambert, Angewandte Chemie International Edition, Vol. 131, pp. 19163–19169, 2019, DOI: 10.1002/anie.201909461

45.Thermal transport through single molecule junctions, N Mosso, H Sadeghi, A Gemma,Sara Sangtarash, CJ Lambert, B Gotsmann,Nano Letters, Vol. 19, No. 11, pp. 7614-7622, 2019. DOI: 10.1021/acs.nanolett.9b02089

44.Hemilabile ligands as mechanosensitive electrode contacts for molecular electronics, N Ferri+, N Algethami+, A Vezzoli+,Sara Sangtarash*+, et al.,Angewandte Chemie International Edition, Vol. 131, pp. 16736 – 16742, 2019, DOI: 10.1002/ange.201906400

43.Nanoscale Thermal Transport in 2D Nanostructures from Cryogenic to Room Temperature, C Evangeli, J Spiece,Sara Sangtarash, et al.,Advanced Electronic Materials, Vol. 5, pp. 1900331, 2019, DOI: 10.1002/aelm.201900331

42.Gating of single-molecule thiophene junctions towards anti-resonance with destructive quantum interference, J Bai+, A Daaoub+,Sara Sangtarash+, et al.,Nature Materials, Vol. 18, No. 4, pp. 364-369, 2019. DOI: 10.1038/s41563-018-0265-4

41.Cross-conjugation increases the conductance of meta-connected fluorenones, A Alanazy+, E Leary+, T Kobatake+,Sara Sangtarash+*, et al.,Nanoscale, Vol. 11, pp. 13720-13724, 2019, DOI: 10.1039/c9nr01235d

40.Unusual Length-Dependence of Conductance in Cumulene Molecular Wire, W Xu, E Leary, S Hou,Sara Sangtarash, et al.,Angewandte Chemie International Edition, Vol. 58, No. 25, pp. 8378-8382, 2019, DOI: 10.1002/anie.201901228

39.On the resilience of magic number theory for conductance ratios of aromatic molecules, L Ulcakar, T Rejec, J Kokalj,Sara Sangtarash, et al.,Scientific Reports, Vol. 9, No. 1, pp. 3478, 2019. DOI: 10.1038/s41598-019-39937-1

38.Magic number theory of superconducting proximity effects and Wigner delay times in graphene-like molecules, P Rakyta, A Alanazy, A Kormanyos, Z Tajkov, G Kukucska, J Koltai,Sara Sangtarash, H Sadeghi, J Cserti, CJ Lambert,The Journal of Physical Chemistry C, Vol. 123, No. 11, pp. 6812-6822, 2019. DOI: 10.1021/acs.jpcc.8b11161

37.Charge Transport in Graphene-based multi-molecules junctions, M E Abbassi,Sara Sangtarash, et al., Bulletin of the American Physical Society, 2019, MAR19/Session/F12.13

36.Charge-Transport Through Switchable Dihydropyrene Single-Molecule Junctions, M Roemer, DC MILAN, A Gilespie, D Jago, J Alqahtani,Sara Sangtarash, et al., 10th International Conference on Materials for Advanced Technologies, 23 - 28 June 2019, Singapore, Sym G-05 Opto-electronic junctions

35.The conductance of porphyrin-based molecular nanowires increases with length, N Algethami, H Sadeghi,Sara Sangtarash, and CJ Lambert,Nano Letters, Vol. 18, No. 7, pp. 4482-4486, 2018. DOI: 10.1021/acs.nanolett.8b01621

34.Breakdown of Curly Arrow Rules in Anthraquinone, J Alqahtani, H Sadeghi,Sara Sangtarash, CJ Lambert,Angewandte Chemie International Edition, Vol. 57, pp. 57, 15065-15069, 2018. DOI: 10.1002/anie.201807257

33.Bias-driven conductance increase with length in porphyrin tapes, E Leary, B Limburg, A Alanazy,Sara Sangtarash, et al.,Journal of the American Chemical Society (JACS), Vol. 140, No. 40, pp. 12877-12883, 2018. DOI: 10.1021/jacs.8b06338

32.Anchor groups for graphene-porphyrin single-molecule transistors, B Limburg, JO Thomas, G Holloway, H Sadeghi,Sara Sangtarash, et al.,Advanced Functional Materials, Vol. 28, pp. 1803629, 2018. DOI: 10.1002/adfm.201803629

31.Heteroatom-induced molecular asymmetry tunes quantum interference in charge transport through single-molecule junctions, Y Yang, M Gantenbein, A Alqorashi, J Wei,Sara Sangtarash, et al.,The Journal of Physical Chemistry C, Vol. 122, No. 26, pp. 14965-14970, 2018. DOI: 10.1021/acs.jpcc.8b03023

30.Probing Lewis Acid-Base Interactions in Single-Molecule Junctions, X Liu+, X Li+,Sara Sangtarash+*, et al.,Nanoscale, Vol. 10, No. 38, pp. 18131-18134, 2018. DOI: 10.1039/C8NR06562D .

29.Theory of mid-gap quantum transport through single molecule,Sara Sangtarash,poster in QuEEN Programme Grant Advisory Board meeting, Wolfson College, Oxford 2018.

28.Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions,Sara Sangtarash*, H Sadeghi, CJ Lambert,Physical Chemistry Chemical Physics, Vol. 20, No. 14, pp. 9630-9637, 2018. DOI: 10.1039/C8CP00381E

27.Gateway state-mediated, long-range tunneling in molecular wires,Sara Sangtarash*, et al.,Nanoscale, Vol 10, pp. 3060-3067, 2018. DOI: 10.1039/C7NR07243K

26.Robust molecular anchoring to graphene electrodes, H Sadeghi,Sara Sangtarash, C Lambert,Nano Letters, Vol. 17, No. 8, pp. 4611-4618, 2017. DOI: 10.1021/acs.nanolett.7b01001

25.Gating of quantum interference in molecular junctions by heteroatom substitution, X Liu+,Sara Sangtarash+*, et al.,Angewandte Chemie International Edition, Vol. 56, No. 1, pp. 173-176, 2017. DOI: 10.1002/anie.201609051

24.Protonation tuning of quantum interference in azulene-type single-molecule junctions, G Yang+,Sara Sangtarash+, et al.,Chemical Science, Vol. 8 No. 11, pp. 7505-7509, 2017. DOI: 10.1039/C7SC01014A

23.Quantum interference in graphene nanoconstrictions, P Gehring, H Sadeghi,Sara Sangtarash, CS Lau, J Liu, A Ardavan, JH Warner, CJ Lambert, GAD Briggs, JA Mol,Nano Letters, Vol. 16, No. 7, pp. 4210-4216, 2016. DOI: 10.1021/acs.nanolett.6b01104

22.Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures, H Sadeghi,Sara Sangtarash, CJ Lambert,2D Materials, Vol. 4, No. 1, pp. 015012, 2016. DOI: 10.1088/2053-1583/4/1/015012

21.Exploring quantum interference in heteroatom-substituted graphene-like molecules,Sara Sangtarash*, H Sadeghi, CJ Lambert,Nanoscale (Communication), Vol. 6, No. 27, pp. 13199-13205, 2016. DOI: 10.1039/C6NR01907B

20.Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions, H Sadeghi,Sara Sangtarash, C LambertPhysica E: Low-dimensional Systems and Nanostructures, Vol. 82, pp. 12-15, 2016. DOI: 10.1016/j.physe.2015.09.005

19.Oligoyne molecular junctions for efficient room temperature thermoelectric power generation, H Sadeghi,Sara Sangtarash, CJ Lambert,Nano Letters, Vol. 15, No. 11, pp. 7467-7472, 2015. DOI: 10.1021/acs.nanolett.5b03033

18.Redox-dependent Franck-Condon blockade and avalanche transport in a graphene-fullerene single-molecule transistor, CS Lau, H Sadeghi, G Rogers,Sara Sangtarash, et al.,Nano Letters, Vol. 16, No. 1, pp. 170-176, 2015. DOI: 10.1021/acs.nanolett.5b03434

17.Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic,Sara Sangtarash*, et al,Journal of the American Chemical Society (JACS), Vol. 137, No. 35, pp. 11425-11431, 2015. DOI: 10.1021/jacs.5b06558

16.Magic ratios for connectivity-driven electrical conductance of graphene-like molecules, Y Geng+,Sara Sangtarash+*, et al.,Journal of the American Chemical Society (JACS), Vol. 137, No. 13, pp. 4469-4476, 2015. DOI: 10.1021/jacs.5b00335

15.Enhanced thermoelectric efficiency of porous silicene nanoribbons, H Sadeghi,Sara Sangtarashand CJ Lambert,Scientific Reports, Vol. 5, pp. 9514, 2015. DOI: 10.1038/srep09514

14.Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons, H Sadeghi,Sara Sangtarashand CJ Lambert,Beilstein Journal of Nanotechnology, Vol. 6, No. 2, pp. 1176-1182, 2015. DOI: 10.3762/bjnano.6.119

13.Negative differential electrical resistance of a rotational organic nanomotor, H Sadeghi,Sara Sangtarash, Q Al-Galiby, R Sparks, S Bailey, CJ Lambert,Beilstein Journal of Nanotechnology, Vol. 6, No. 1, pp. 2332-2337, 2015. DOI: 10.3762/bjnano.6.240

12.Electron and heat transport in porphyrin-based single molecule transistors with electro-burnt graphene electrodes, H Sadeghi,Sara Sangtarashand CJ Lambert,Beilstein Journal of Nanotechnology, Vol. 6, No. 5, pp.1413-1420, 2015. DOI: 10.3762/bjnano.6.146

11.Chapter 3: Silicene nanoribbons and nanopores for nanoelectronic devices and applications, H Sadeghi andSara Sangtarash, in Handbook of Research on Nanoelectronic Sensor Modeling and Applications, M. T. Ahmadi, Razali Ismail, Soheil Anwar, Editor. 2015, IGI Global, ISBN: 152250737X, 9781522507376 DOI: 10.4018/978-1-5225-0736-9.ch003

10.Graphene sculpturene nanopores for DNA nucleobase sensing, H Sadeghi, LA Algharagholy, T Pope, SWD Bailey, D Visontai, DZ Manrique, J Ferrer, VM Garcia-Suarez,Sara Sangtarash, CJ Lambert,Journal of Physical Chemistry B, Vol. 118(24), pp. 6908-6914, 2014. DOI: 10.1021/jp5034917

9.DNA Nucleobase Sensing Using Graphene Nanopores,Sara Sangtarash, et al., poster in CECAM Workshop, High performance models for charge transport in large scale materials systems, 6-10 Oct. 2014. Bremen University, Bremen, Germany

8.DNA Nucleobase Sensing Using Silicene Nanopores,Sara Sangtarash, et al., poster in Faculty of Science and Technology Christmas Conference, 16 Dec. 2014. Lancaster University, Lancaster, UK

7.Nucleobase Sensing,Sara Sangtarash, et al., poster in MOLESCO Network Meeting, 1 Oct. 2014. University of Konstanz, Konstanz, Germany

6.Directional control of charge transport through anthanthrene-based single-molecule junctions,Sara Sangtarash, et al., poster in MOLESCO Network Meeting, 1 Oct. 2014. University of Konstanz, Konstanz, Germany

5.Spectrum Sensing for Efficient Sharing of LTE and DVB-T systems,Sara Sangtarash, HL King,International Journal of Information and Communication Technology, Volume 3. 5, 2013.

4.Schottky current in carbon nanotube - metal contact,Sara Sangtarash, et al.,Journal of Computational and Theoretical Nanoscience, Vol. 9(10), pp. 1554-1557, 2012, DOI: 10.1166/jctn.2012.2243

3.Using Cognitive Radio Interference Mitigation Technique to Enhance Coexistence and Sharing Between DVB-T and LTE System,Sara Sangtarash, et al., Future Network & Mobile Summit, 2012, 4 - 6 July 2012, Berlin, Germany.

2.Bilayer Graphene Conductance Model in the Degenerate Limit, H Sadeghi,Sara Sangtarash, MT Ahmadi, The First Iranian Students Scientific Conference in Malaysia (FISSCM), 9-10 April 2011, University Putra Malaysia, Kuala Lumpur, Malaysia

1.Biased Voltage Boundary Condition to Operate Bilayer Graphene in the Insulating Region, H Sadeghi, MT Ahmadi,Sara Sangtarash, R Ismail, in Electronic Devices, Systems and Applications (ICEDSA), 2011 International Conference on, 2011, pp. 50-52. DOI: 10.1109/ICEDSA.2011.5959053