Skip to main content Skip to navigation

Publications

[83] D. Chakraborty, H. Karamitaheri, L. de Sousa Oliveira, and N. Neophytou. Effect of wave versus particle phonon nature in thermal transport through nanostructures. Computational Materials Science, 180, 109712 (2020). [pdf][link to Comp. Mat. Sci]

[82] Neophytos Neophytou, Samuel Foster, Vassilios Vargiamidis, Giovanni Pennelli, and Dario Narducci, ‘Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors,’ MaterialsToday Physics, 11, 100159, 2019. [pdf][arXiv][link to MTPHYS]

[81] Dhritiman Chakraborty, Joshua Brooke, Nick Hulse and Neophytos Neophytou, ‘Thermal rectification optimization in nanoporous Si using Monte Carlo simulations,’ Journal of Applied Physics 126, 184303 (2019). [pdf][JAP][arXiv]

[80] Patrizio Graziosi, Chathurangi Kumarasinghe, and Neophytos Neophytou, ‘Impact of the scattering physics on the power factor of complex thermoelectric materials’, Journal of Applied Physics 126, 155701 (2019).[pdf][JAP][arXiv]

[79] Laura de Sousa Oliveira, Vassillios Vargiamidis, and Neophytos Neophytou, ‘Modelling thermoelectric performance in nanoporous nanocrystalline silicon’ IEEE Transactions on Nanotechnology, 18, 896-903, 2019. [link to IEEE][link to arXiv]

[78] Vassilios Vargiamidis, Mischa Thesberg, and Neophytos Neophytou, ‘Theoretical model for the Seebeck coefficient in superlattice materials with energy relaxation,’ Journal of Applied Physics, 126, 055105 (2019). [pdf][link to JAP][link to arXiv]

[77] Laura de Sousa Oliveira and Neophytos Neophytou, ‘Large-scale molecular dynamics investigation of geometrical features in nanoporous Si,’ Phys. Rev. B 100, 035409 (2019). [pdf – SI][link to PRB][link to arXiv]

[76] Chathurangi Kumarasinghe and Neophytos Neophytou, ‘Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: The case of Co-based half-Heusler alloys,’ Phys. Rev. B 99, 195202 (2019). [pdf- SI][link to PRB][arXiv]

[75] Samuel Foster* and Neophytos Neophytou, ‘Effectiveness of nanoinclusions for reducing bipolar effects in thermoelectric materials’, Computational Materials Science, 164, 91-98, (2019). [pdf][link to Comp. Mat. Sci.][arXiv]

[74] Dhritiman Chakraborty, Laure de Sousa Oliveira, and Neophytos Neophytou, ‘Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures’, Journal of Electronic Materials, Volume 48, Issue 4, pp 1909-1916, 2019. [pdf][link to JEM][arXiv]

[73] Vassilios Vargiamidis and Neophytos Neophytou, ‘Hierarchical nanostructuring approaches for thermoelectric materials with high power factors’, Phys. Rev. B 99, 045405, 2019. [pdf][link to PRB][arXiv]

[72] Samuel Foster and Neophytos Neophytou, ‘Doping optimization for the power factor of bipolar thermoelectric materials’, Journal of Electronic Materials, 2018. [pdf][link to JEM][arXiv]

[71] Davide Beretta, Neophytos Neophytou, James M. Hodges, Mercouri G. Kanatzidis, Dario Narducci, Marisol Martin-Gonzalez, Matt Beekman, Benjamin Balke, Giacomo Cerretti, Wolfgang Tremel, Alexandra Zevalkink, Anna I. Hofmann, Christian Müller, Bernhard Dörling, Mariano Campoy-Quiles, Mario Caironi, ‘Thermoelectrics: from history, a window to the future,’ Materials Science and Engineering: R: Reports, accepted, 2018. [link to Mat. Sci. and Eng.: R: Reports]

[70] Dhritiman Chakraborty, Samuel Foster, and Neophytos Neophytou, Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures”, Phys. Rev. B 98, 115435, 2018. [pdf][arXiv][link to PRB]

[69] Vassilios Vargiamidis, Samuel Foster, and Neophytos Neophytou, ‘Thermoelectric power factor in nanostructured materials with randomized nanoinclusions’, Phys. Status Solidi A, 1700997, 2018. [pdf][arXiv][link to pssa]

[68] Patrizio Grasiozi and Neophytos Neophytou, “Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds”, Journal of Applied Physics 123, 084503 (2018). [pdf][arXiv][link to JAP]

[67] Samuel Foster, Mischa Thesberg, and Neophytos Neophytou, ‘Thermoelectric power factor of nanocomposite materials from two-dimensional quantum transport simulations’, Phys. Rev. B, 96, 195425, 2017. [pdf][arXiv][link to PRB]

[66] Mischa Thesberg, Hans Kosina, and Neophytos Neophytou, ‘On the Lorenz number of multiband materials’, Phys. Rev. B 95, 125206, 2017. [pdf][arXiv][link to PRB]

[65] Mischa Thesberg, Hans Kosina, and Neophytos Neophytou,’On the effectiveness of the thermoelectric energy filtering mechanism in low-dimensional superlattices and nano-composites’, J. Appl. Phys. 120, 234302 (2016). [pdf][arXiv][link to JAP]

[64] Nick S. Bennett, Daragh Byrne, Aidan Cowley, and Neophytos Neophytou, “Dislocation Loops as a Mechanism for Thermoelectric Power Factor Enhancement in Silicon Nano-Layers,” Appl. Phys. Lett. 109, 173905 (2016). [pdf][link to APL]

[63] Y. Lu, X. Wang, M. D. Higgins, A. Noel, N. Neophytou, M. Leeson, “Energy Requirements of Error Correction Codes in Diffusion-Based Molecular Communication Systems,” Nano Communication Networks, Volume 11, March 2017, Pages 24-35. [pdf][link to Nano Communication Networks]

[62] J. A. P.-Taborda, M. M.-Rojo, J. Maiz, N. Neophytou, M. M. González, “Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications,” Nature Sci. Rep., 6, 32778, 2016. [pdf][link to Nature]

[61] Hossein Karamitaheri and Neophytos Neophytou, “On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons,” Appl. Phys. Lett. 109, 063102 (2016). [pdf][link to APL][link to arXiv]

[60] Hossein Karamitaheri and Neophytos Neophytou, “Phonon transport effects in one-dimensional width-modulated graphene nanoribbons,” J. Appl. Phys. 119, 244302 (2016). [pdf][link to JAP][link to arXiv]

[59] Neophytos Neophytou and Hossein Karamitaheri, “Phonon transport simulations in low-dimensional, disordered graphene nanoribbons,” IEEE Transactions in Nanotechnology, vol. 15, issue 3, pp. 339 – 347, 2016. [pdf][link to IEEE]

[58] N. Neophytou and M. Thesberg, “Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor,” J. Computational Electronics, Volume 15, Issue 1, pp 16-26, 2016 (Invited paper). [pdf][link to JCE]

[57] M. Thesberg, M. Pourfath, H. Kosina, and N. Neophytou, “The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices,” J. Appl. Phys. 118, 224301 (2015). [pdf][arXiv][link to JAP]

[56] M. Thesberg, M. Pourfath, N. Neophytou, H. Kosina, “The fragility of thermoelectric power factor in cross-plane superlattices in the presence of non-idealities: A quantum transport simulation approach,” J. Electronic Materials, Volume 45, Issue 3, pp 1584-1588, 2015. [pdf][link to JEM]

[55] Hossein Karamitaheri, Mahdi Pourfath, Hans Kosina, and Neophytos Neophytou, “Low-dimensional phonon transport effects in ultra-narrow, disordered graphene nanoribbons”, Phys. Rev. B 91, 165410, 2015. [pdf][arXiv][link to PRB]

[54] N. Neophytou, “Prospects of low-dimensional and nanostructured silicon-based thermoelectric materials: Findings from theory and simulation”, European Physical Journal B, (invited paper), Volume 88, 86, 2015. [pdf][link to EPJ-B]

[53] N. Neophytou, H. Karamitaheri, and H. Kosina, “Field-effect density modulation in Si nanowires for increasing ZT: A simulation study”, J. Electronic Materials, Volume 44, Issue 6, pp 1599-1605, 2015. [pdf][link to JEM]

[52] Neophytos Neophytou and Hans Kosina, “Gated Si nanowires for large thermoelectric power factors”, Applied Physics Letters, 105, 073119 (2014). [pdf][arXiv][link to APL]

[51] Stefanie Wolf, Neophytos Neophytou, Zlatan Stanojevic, and Hans Kosina, “Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes”, Journal of Electronic Materials, October 2014, Volume 43, Issue 10, pp 3870-3875. [pdf][link to JEM]

[50] Stefanie Wolf, Neophytos Neophytou, and Hans Kosina, “Thermal conductivity of silicon nanomeshes: Effects of porosity and roughness”, J. Appl. Phys. 115, 204306, 2014. [pdf][arXiv][link to JAP]

[49] B. Lorenzi , D. Narducci, R. Tonini, S. Frabboni, G.C. Gazzadi, G. Ottaviani, N. Neophytou, X. Zianni, “Paradoxical enhancement of the power factor in polycrystalline silicon due to the formation of nanovoids,” Journal of Electronic Materials, October 2014, Volume 43, Issue 10, pp 3812-3816. [pdf][link to JEM]

[48] Dario Narducci, Bruno Lorenzi, Xanthippi Zianni, Neophytos Neophytou, Stefano Frabboni, Gian Carlo Gazzadi, Alberto Roncaglia, and Francesco Suriano, “Enhancement of the power factor in two-phase silicon-boron nanocrystalline alloys”, Physica status solidi a, vol. 211, Issue 6, page 1255­1258, 2014. [pdf][link to PSS-a]

[47] Hossein Karamitaheri, Neophytos Neophytou, and Hans Kosina, “Anomalous diameter dependence of thermal transport in ultra-narrow Si nanowires”, J. Appl. Phys. 115, 024302 (2014). [pdf][arXiv][link to JAP]

[46] Neophytos Neophytou, Xanthippi Zianni, Hans Kosina, Stefano Frabboni, Bruno Lorenzi, and Dario Narducci, “Power factor enhancement by inhomogeneous distribution of dopants in two-phase nanocrystalline systems,” Journal of Electronic Materials, Volume 43, Issue 6, pp 1896-1904, June 2014. [pdf][link to JEM]

[45] Neophytos Neophytou, Hossein Karamitaheri, and Hans Kosina, “Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers,” Journal of Computational Electronics, Volume 12, Issue 4, pp 611-622, 2013 (invited). [pdf][link to JCE]

[44] Hossein Karamitaheri, Neophytos Neophytou, and Hans Kosina, “Use of Atomistic Phonon Dispersion and Boltzmann Transport Formalism to Study the Thermal Conductivity of Narrow Si Nanowires,” Journal of Electronic Materials, Volume 43, Issue 6, pp 1829-1836, 2014. [pdf][link to JEM]

[43] Neophytos Neophytou and Hans Kosina, “Optimizing Thermoelectric Energy Filtering by Means of a Potential Barrier ,” J. Appl. Phys., 114, 044315, 2013. [pdf][arXiv][link to JAP]

[42] Hossein Karamitaheri, Neophytos Neophytou, and Hans Kosina, “Ballistic Phonon Transport in Ultra-Thin Silicon Layers: Effects of Confinement and Orientation,” J. Appl. Phys. 113, 204305 (2013). [pdf][arXiv][link to JAP]

[41] K. Holland, N. Paydavosi, N. Neophytou, D. Kienle, and M. Vaidyanathan, “RF Performance Limits and Operating Physics Arising from the Lack of a Bandgap in Graphene Transistors,” IEEE Transactions on Nanotechnology, vol. 12, issue. 4, pp. 566 – 577, 2013. [link to IEEE]

[40] Neophytos Neophytou, Xanthippi Zianni, Hans Kosina, Stefano Frabboni, Bruno Lorenzi, and Dario Narducci, “Simultaneous increase in electrical conductivity and Seebeck coefficient in highly Boron-doped nanocrystalline Si,” Nanotechnology 24 (2013) 205402. [pdf][link to Nanotechnology]

[39] Hossein Karamitaheri, Neophytos Neophytou, Mohsen Karami Taheri, Rahim Faez, and Hans Kosina, “Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires using the Valence Force Field Method,” J. Electronic Materials, Volume 42, Issue 7 (2013), Page 2091-2097. [pdf][arXiv][link to JEM]

[38] N.Neophytou, X.Zianni, M. Ferri, A. Roncaglia, G.F. Cerofolini, and D. Narducci, “Nanograin effects on the thermoelectric properties of poly-Si nanowires,” J. Electronic Materials, Volume 42, Issue 7 (2013), Page 2393-2401. [pdf][link to JEM]

[37] Neophytos Neophytou, Oskar Baumgartner, Zlatan Stanojevic, and Hans Kosina, “Bandstructure and Mobility Variations in p-type Silicon Nanowires under Electrostatic Gate Field,” Solid State Electronics, Volume 90, Pages 44–50, December 2013. [pdf][arXiv][link to SSE]

[36] S. Ahmed, K. Holland, N. Paydavosi, C. Rogers, A. Alam, N. Neophytou, D. Kienle, M. Vaidyanathan, “Impact of Effective Mass on the Scaling Behavior of the fT and fmax of III-V High-Electron-Mobility Transistors,” IEEE Transactions on Nanotechnology, vol 11, no 6, pp. 1160 – 1173, 2012. [link to IEEE]

[35] Neophytos Neophytou and Hans Kosina, ” Large Thermoelectric Power Factor in p-type Si (110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels,” J. Appl. Phys., 112, 024305, 2012. [pdf][arXiv][link to JAP]

[34] Neophytos Neophytou and Hans Kosina, “Bias-Induced Hole Mobility Increase in Narrow [111] and [110] Si Nanowire Transistors,” IEEE Electr. Dev. Lett., vol. 33, issue 5, pp. 652-654, 2012. [pdf][link to IEEE]

[33] Hossein Karamitaheri, Neophytos Neophytou, Mahdi Pourfath, Rahim Faez, and Hans Kosina, “Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons,” J. Appl. Phys. 111, 054501, 2012. [pdf][arXiv][link to JAP]

[32] Neophytos Neophytou and Hans Kosina, “Numerical study of the thermoelectric power factor in ultra-thin Si nanowires”, Journal of Computational Electronics, vol. 11, issue 1, page 29-44, 2012 (invited). [pdf][arXiv][link to Springer-JCE]

[31] Neophytos Neophytou and Hans Kosina, “On the interplay between electrical conductivity and Seebeck coefficient in ultra-narrow silicon nanowires”, Journal of Electronic Materials, vol. 41, 6, 1305-1311, 2012. [pdf][arXiv][link to Springer-JEM]

[30] Neophytos Neophytou and Hans Kosina, “Confinement-induced carrier mobility increase in nanowires by quantization of warped bands,” Solid State Electronics, vol. 70, p. 81-91, 2012. [pdf] [link to SSE]

[29] Hossein Karamitaheri, Neophytos Neophytou, Mahdi Pourfath, and Hans Kosina, “Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method”, Journal of Computational Electronics, Volume 11, Issue 1, pp 14-21, 2012 (invited). [pdf][arXiv][link to Springer-JCE]

[28] Neophytos Neophytou and Hans Kosina, “Hole mobility increase in ultra-narrow Si channels under strong (110) surface confinement,” Applied Physics Letters, 99, 092110, 2011. [pdf][arXiv][link to APL]

[27] Neophytos Neophytou and Hans Kosina, “Atomistic simulations of low-field mobility in Si nanowires: Influence of confinement and orientation,” Physical Review B, 84, 085313, 2011. [pdf][arXiv][link to PRB]

[26] Neophytos Neophytou and Hans Kosina, “Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires,” Physical Review B, Vol. 83, 245305, 2011. [pdf][arXiv][link to PRB]

[25] Neophytos Neophytou, Gerhard Klimeck, and Hans Kosina, “Subband engineering for p-type silicon ultra-thin layers for increased carrier velocities: An atomistic analysis,” J. Appl. Phys., vol. 109, p. 053721, 2011. [pdf][arXiv][link to JAP]

[24] Neophytos Neophytou and Hans Kosina, “Thermoelectric properties of ultra scaled silicon nanowires using the sp3d5s*-SO atomistic tight-binding model and Boltzmann transport,” Journal of Electronic Materials, vol. 40, no. 5, pp. 753-758, 2011. [pdf][arXiv][link to Springer-JEM]

[23] Neophytos Neophytou and Hans Kosina, “Large enhancement in hole velocity and mobility in p-type [110] and [111] silicon nanowires by cross section scaling: An atomistic analysis,” Nano Lett., vol. 10, no. 12, pp. 4913-4919, 2010. [pdf][arXiv][link to NanoLetters]

[22] Neophytos Neophytou, Sung Geun Kim, Gerhard Klimeck, and Hans Kosina, “

On the Bandstructure Velocity and Ballistic Current of Ultra Narrow Silicon Nanowire Transistors as a Function of Cross Section Size, Orientation and Bias,” J. Appl. Phys, vol. 107, p. 113701, 2010. [pdf][arXiv][link to JAP]

[21] Neophytos Neophytou, Martin Wagner, Hans Kosina, and Siegfried Selberherr, “Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model,” Journal of Electronic Materials, vol. 39, no. 9, pp. 1902-1908, 2010 (From the special issue: International Conference on Thermoelectrics 2009). [pdf][arXiv][link to Springer-JEM]

[20] Neophytos Neophytou, Titash Rakshit, and Mark S. Lundstrom, “Performance Analysis of 60nm gate length III-V InGaAs HEMTs: Simulations vs. experiments,” IEEE Trans. Electr. Dev., vol. 56, no. 7, pp. 1377-1387, 2009. [arXiv][link to IEEE]

[19] Neophytos Neophytou and Gerhard Klimeck, “Design Space for Low Sensitivity to Size Variations in [110] PMOS Nanowire Devices: The Implications of Anisotropy in the Quantization Mass,” Nano Lett., vol. 9, no. 2, pp. 623-630, 2009. [pdf][arXiv][link to NanoLetters]

[18] Neophytos Neophytou, Abhijeet Paul, and Gerhard Klimeck, “Bandstructure effects in silicon nanowire hole transport,” IEEE Trans. Nanotechnol. (Special issue on nanowire electronics), vol 7, no. 6, pp. 710-719, 2008 (Cover page). [arXiv][link to IEEE]

[17] Neophytos Neophytou, Abhijeet Paul, Mark S. Lundstrom, and Gerhard Klimeck, “Simulations of nanowire transistors: Atomistic vs. effective mass models,” Journ. Comp. Electr., vol. 7, no. 3, pp. 363-366, 2008. [arXiv][link to Springer-JCE]

[16] Neophytos Neophytou, Abhijeet Paul, Mark S. Lundstrom, and Gerhard Klimeck, “Bandstructure effects in silicon nanowire electron transport,” IEEE Trans. Electr. Dev.,vol. 55, no. 6, pp. 1286-1297, 2008. [pdf][arXiv][link to IEEE]

[15] Yang Liu, Neophytos Neophytou, Tony Low, Gerhard Klimeck, and Mark S. Lundstrom, “A Tight-binding Study of the Ballistic Injection Velocity for Ultra-thinbody SOI MOSFETs,” IEEE Trans. Electr. Dev., vol. 55, no. 3, pp. 866-871, 2008. [link to IEEE][link from Purdue library]

[14] Yang Liu, Neophytos Neophytou, Tony Low, Gerhard Klimeck, and Mark S. Lundstrom, “Band Structure Effects on the Performance of III-V Ultra-thin-body SOI MOSFETs,” IEEE Trans. Electr. Dev., vol 55, no. 5, pp. 1116-22, 2008. [link to IEEE][link from Purdue library]

[13] Gengchiau Liang, Neophytos Neophytou, Mark S. Lundstrom, and Dmitri Nikonov, “Computational Study of Double-Gate Graphene Nano-Ribbon Transistors,” Journ. Comp. Electr., vol. 7, no. 3, pp. 394-397, 2008. [link to Springer-JCE]

[12] Gengchiau Liang, Neophytos Neophytou, Mark S. Lundstrom, and Dmitri Nikonov, “Contact effects in Graphene Nano-Ribbon Transistors,” Nano Lett., 8(7), pp. 1819-1824, 2008. [link to NanoLetters]

[11] Raseong Kim, Neophytos Neophytou, Abhijeet Paul, Gerhard Klimeck, and Mark S. Lundstrom, “Dimensionality in metal-oxide-semiconductor field-effect transistors: A comparison of one-dimensional and two-dimensional ballistic transistors,” Journal of Vacuum Science and Technology B, vol. 26, no. 4, pp. 1628-1631, 2008. [link to JVSTB][link from Purdue Library]

[10] Shaikh Ahmed, Muhammad Usman, Marek Korkusinski, Neophytos Neophytou and Gerhard Klimeck, “Atomistic Simulation of Realistically Sized InAs/GaAs Quantum Dots: Impact of Long-Range Strain and Piezoelectricity,” International Journal of Nanoscience and Nanotechnology, 2007. [link to IJNN]

[9] Neophytos Neophytou, Shaikh Ahmed and Gerhard Klimeck, “Non-Equilibrium Green’s Function (NEGF) Simulation of Metallic Carbon Nanotubes Including Vacancy Defects,” Journal of Computational Electronics, vol. 6, no. 1-3, pp. 317-320, 2007. [link to Springer-JCE]

[8] Neophytos Neophytou, Shaikh Ahmed, and Gerhard Klimeck, “Influence of vacancies on Metallic Nanotube Transport Properties.” Applied Physics Letters, 90, 182119, 2007. [pdf][link to APL]

[7] Liang Gengchiau, Neophytos Neophytou, Dmitri Nikonov, and Mark Lundstrom, “Performance Projections for Ballistic Graphene Nanoribbon Field-Effect Transistors,” IEEE Transactions on Electron Devices, vol. 54, 4, pp. 677-682, 2007. [pdf][link to IEEE]

[6] Gengchiau Liang, Neophytos Neophytou, Mark S. Lundstrom, and Dmitri Nikonov, “Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation,” J. Appl. Phys, 102, 054307, 2007. [pdf][arXiv][link to JAP]

[5] J. Guo, S. Koswatta, N. Neophytou, and M. Lundstrom “Carbon Nanotube Field-Effect Transistors,” International Journal of High Speed Electronics and Systems, 16, 897, 2006 (invited). [pdf][link to IJHSES]

[4] S. Koswatta, N. Neophytou, D. Kienle, G. Fiori, and M. Lundstrom, “Dependence of DC characteristics of CNT-MOSFETs on bandstructure models,” IEEE Transactions on Nanotechnology, vol. 5, no. 4, pp. 368-372, 2006. [link to IEEE][link from Purdue Library]

[3] Neophytos Neophytou, Jing Guo, and Mark Lundstrom, “Three-Dimensional Electrostatic Effects of Carbon Nanotube Transistors,” IEEE Transactions on Nanotechnology, vol. 5, no. 4, pp. 385-392, 2006. [pdf][link to IEEE]

[2] Neophytos Neophytou, Diego Kienle, Eric Polizzi, and M. P. Anantram, “Influence of Defects in Nanotube Transistor Performance.” Applied Physics Letters, 88, 242106, 2006. [pdf][link to APL]

[1] Neophytos Neophytou, Jing Guo and Mark Lundstrom, “3D-Electrostatics of Carbon Nanotube Field Effect Transistors”, Journal of Computational Electronics, vol. 3, pp. 277-280, 2004. [link to Springer-JCE]