Skip to main content Skip to navigation

References

Physics of fluids (1994)Link opens in a new window

Physics of fluids (1958)Link opens in a new window

Web of Science directLink opens in a new window

Journal libraryLink opens in a new window

Catalogue libraryLink opens in a new window 

 

References:

1-Albertoni, S., Cercignan, C. & Gotusso, L.Link opens in a new window 1963 Numerical Evaluation of the Slip Coefficient. Phys. Fluids  6, 993-996 ???.

    2-Aubert C.& Stephane C. 2001Link opens in a new window High-Order Boundary Conditions for Gaseous Flows in Rectangular Microducts. Nano. and Micro. Thermo. Eng. 5, 41 -54.

    3-Barrat J-L., Bocquet L. 1999aLink opens in a new window Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday discussions ,112, 119 – 128.

    4-Barrat J.-L.& Bocquet L. 1999bLink opens in a new window, Large slip effect at a nonwetting fuid solid interface. Phys. Rev. Lett. 82, 4671- 4674.

    5-Barrat J.-L. & Bocquet L. 2007Link opens in a new window Flow boundary conditions from nano- to micro-scales, Soft Matter 3, 686-693.

    6-Bartel, T. J., Gallis, M. A. & Plimpton S. 2001Link opens in a new window Icarus: a 2D direct-simulation Monte Carlo (DSMC) code for multi-processor computers. Sandia Report no. 2001-2901.

    7-Beskok A.& Karniadakis, G. E. (1999)Link opens in a new window Report: A model for flows in channels, pipes and ducts at mocro and nano scales. Nano. Micro. Thermophysical Eng. 3, 43 – 77.

    8-Cercignani C.1990 Mathematical Methods in Kinetic Theory. New York , Plenum

    9-Cassell J. S.&. Williams M. M. R(1972) An exact solution of the temperature slip problem in rarefied gases, Trans. Theo. Statis. Phys. 2, 81 – 90. *

    10-Choi C.H., Ulmanella U., Kim J., Ho C.M. & Kim C.J. 2006Link opens in a new window Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18, 0871051-8.

    11-Crochet M.J. & Purnode B. 1996Link opens in a new window Flows of polymer solutions through contractions Part 1: flows of polyacrylamide solutions through planar contractions. J. Non-Newt. Fluid Mech. 65, 269-289.

    12-Deissler R. GLink opens in a new window. 1964 An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int. J. H. M. Trans. 7, 681-694.

    13-Gad-el-Hak M. The Freeman Scholar Lecture. 1999Link opens in a new window J. Flu. Eng. 121, 5-33.

    14-Gallis M.A. , Reese J. M.& Lockerby D. A. 2003Link opens in a new window New Directions in Fluid Dynamics: Non-Equilibrium Aerodynamic and Microsystem Flows. Phil. Trans.: Math., Phys. and Eng. Sci. 361, 2967-2988.

    15- Gallis M.A, Lockerby D.A.& Reese J.M. 2005Link opens in a new window The usefulness of higher-order constitutive relations for describing the Knudsen layer. Phys. Fluids 17, 100691-9.

    16- Fukagata K., Kasagi N. & Koumoutsakos P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703-4.

     

    17-Hadjiconstantinou N. G. 2003Link opens in a new window Comment on Cercignani's second-order slip coefficient. Phys. Fluids 15, 2352-4.

    18- Hadjiconstantinou N. G. and Simek O. (2002) Link opens in a new windowConstant-Wall-Temperature Nusselt Number in Micro and Nano-Channels. Transactions of the ASME: J. heat Transfer 124, 356-364.

    19-Lockerby D. A. & Reese J. M. 2003 High-resolution Burnett simulations of micro Couette flow and heat transfer. J. Comp. Phys. 188, 333-347.

    20- Lockerby D. A., Reese J. M., Emerson D. R. & Barber R. W. 2004Link opens in a new window Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E 70, 0173031-4.

    21- Lockerty D. A. , Reese J.M. & Gallis M. A. 2005 Capturingthe Knudsen layer in continuum-fluid models of nonequilibrim gas flow. AIAA Journal 43, 139113-93.

    22- Lockerty D. A. , Reese J.M. & Gallis M. A. 2005 The usefulness of higher-order constitutive relations for describing the Knudsen layer. Phys. Fluids 17 , 100609

     

    23-Lauga E. & Stone H. A. 2003Link opens in a new window Effective slip in pressure-driven Stokes flow. J. Fluid. Mech. 489, 55-77.

    24-Maxwell J.c. 1879Link opens in a new window Philos. Trans. R. Soc. London 170, 213-256.

    25- Min T. & Kim J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16, L55

     

    26- Richardson S. 1973Link opens in a new window On the no-slip boundary condition. J. Fluid Mech. 59 707-719.

    27- Sone Y. 2002 kinetic Theory and Fluid Dynamics. Boston, Birkhauser.

    28-Sunarso A., Mori N. & Yamamoto T. 2007Link opens in a new window Numerical analysis of wall slip effects on flow of newtonian and non-newtonian fluids in macro and micro Contraction Channels. J. Fluids Eng.129, 23-30.

    29-Wapperom P., Keunings R. & Legat V. 2000Link opens in a new window The backward-tracking Lagrangian particle method for transient viscoelastic flows. J. Non-Newt. Fluid Mech. 91, 273-295.