Skip to main content

References

[1] Adams, S., Personal Communication. University of Warwick (2012).
[2] Biskup, M., Kotecký, R., Phase coexistence of gradient gibbs states. Prob. Th. Rel. Fields, 139, 1-39y (2007).
[3] Blanc, X., Le Bris, C., Legoll, F., Patz, C., Finite-temperature coarse-graining of one-dimensional models: mathematical analysis and computational approaches. J. Nonlin. Sci. 20 (2), 241-275 (2010).
[4] Brass, H., Knut, P., Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. Math. Surv. Mon., 178, AMS (2011).
[5] Davis, P. J. Circulant Matrices. Wiley & Sons, New York (1979).
[6] Dobson, M., Luskin, M., Ortner, C., Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids, 58, 1741-1757 (2010).
[7] Föll, H. Defects in Crystals. url: http://www.tf.uni-kiel.de/matwis/amat/def_en/overview_main.html [accessed 10th May, 2012].
[8] Funaki, T., Stochastic interface models. École d’Ét´ de Probabilités de Saint Flour XXXIII - 2003 Lecture Notes in Math., 869, Springer, 109-274 (2005).
[9] Funaki, T., Spohn, H., Motion by mean curvature from the ginzburg-landau interface model. Comm. in Math. Phys., 185, 1-36 (1997).
[10] Gray, R. M., Toeplitz and Circulant Matrices: A Review. Now Publishers Inc, Norwell (2005)
[11] Guo, M. Z., Papanicolaou, G.C., Varadhan S. R. S., Nonlinear diffusion limit for a sytem with nearest neighbour interactions. Comm. Math. Phys. 18 (2), 31-59 (1988).
[12] Li, X., Luskin, M., Ortner, C., Positive-Definiteness of the Blended Force-Based Quasicontinuum Method. Preprint, http://arxiv.org/abs/1112.2528 (2011).
[13] Ortner, C., Personal Communication. University of Warwick (2012).
[14] Regniers, G., Van der Jeugt, J., Analytically solvable Hamiltonians for quantum systems with a nearest neighbour interaction. J. Phys. A: Math. Theor., 42 125301, (16pp) (2009)
[15] Al-Hajri, M. , Colledge, T. , Daniel, O., Garrod, B. , Kister, A., One Dimensional Gradient Models.