Seminar on The Adams spectral sequence and Franke's algebraicity conjecture
In the reading seminar this term we will go through the paper:
Patchkoria and Pstrągowski, The Adams spectral sequence and Franke's algebraicity conjecture, Arxiv 2110.03669Link opens in a new window, 2021
The authors show that if a stable category is equipped with a homology theory satisfying certain conditions, than it homotopy category is equivalent to the homotopy category of a certain algebraic category of differential objects. This generalizes and proves a conjecture of Franke. In particular this theorem provides sufficient conditions on a ring spectrum for its derived category to be equivalent to the derived category of its homotopy ring, and a proof that the E(n)-local category is algebraic under a certain relation between n and p.
We will meet on Wednesday at 4pm during term 2 in MS.05. Here is an outline of the talks, and a more detailed description of the talks. We thank Irakli Patchkoria for invaluable help in preparing the plan for the seminar.
Please get in touch if you would like to contribute with a talk.
Date | Talk | Speaker | Notes |
Jan 12 | Overview | Emanuele Dotto | |
Jan 19 |
Homology theories and Adams spectral sequences |
Emanuele Dotto | |
Jan 26 |
The Freyd envelope and epimorphisms |
Julie Rasmusen | |
Feb 2 |
The prestable Freyd envelope and perfect presheaves |
Emanuele Dotto | |
Feb 9 |
Prestable enhancements and thread structures |
Emanuele Dotto | |
Feb 16 |
Bounded and perfect derived categories |
Julie Rasmusen | |
Feb 23 |
Homology adjunction and the thread structure |
||
Mar 2 |
Obstruction theory |
||
Mar 9 |
Proof Part 1: Bousfield adjunction |
||
Mar 16 |
Proof Part 2: Monadicity |