a) Define what it means for a sequence \((a_n)\) to converge to a limit \(a\).

Define what it means for the sequence to be bounded.

Prove that every convergent series is bounded. \hfill [6]

b) Which of the following sequences converge? Justify your answers. Find the limit for those sequences that converge to a real number.

(i) \(a_n = \frac{\sin(n) + \cos(n)}{\log(n)}, \text{ for } n \geq 2\)

(ii) \(b_n = \frac{\log(n)}{3 + \sin(n) + \cos(n)}, \text{ for } n \geq 2\)

(iii) \(c_n = \frac{\sin(n) + 2\log(n)}{\cos(n) + \log(n)}, \text{ for } n \geq 2\) \hfill [6]

c) Given a sequence \((a_n)\), recall that the \(n\)th term \(a_n\) is called a floor term if for every \(m > n\) we have that \(a_m \geq a_n\).

Using this notion, show that any sequence which is bounded below has either an increasing subsequence or a strictly decreasing subsequence. \hfill [8]
Determine whether the following statements are true or false. If true, give a brief justification; if false, give a counterexample. (You will get zero marks if you do not provide either a justification or a counterexample.) You will get one point if provide full and correct answers for all 8 questions.

a) If A is an orthogonal $n \times n$ matrix, then so is A^{-1}.

b) Let $n \geq 2$. If A and B are $n \times n$ matrices with $\text{rank}(A) = \text{rank}(B)$, then $\text{rank}(AB) = \text{rank}(A) = \text{rank}(B)$.

c) Let $n \geq 2$. If A and B are $n \times n$ matrices such that their characteristic polynomials coincide, then A and B are similar.

d) If V is a vector space over \mathbb{R} spanned by vectors v_1, v_2 and v_3, then $\dim_{\mathbb{R}} V = 3$.

e) The map $T : \mathbb{R} \rightarrow \mathbb{R}$ defined by $T(x, y, z) = (-x - y, 5 - z, y + 3)$ is linear.

f) If A is a 2×2 real matrix without real eigenvalues, then A is a rotation matrix.

g) If U, W and Z are subspaces of a vector space V, then $U \cap (W + Z) = (U \cap W) + (U \cap Z)$.

h) If I_V is an identity operator on a vector space V, $\dim V = n$ and A is a matrix corresponding to I_V, then $A = I_n$.

a) Let \(A, B \) be two distinct points in the plane. Let \(c \) respectively \(d \) be a circle around \(A \) respectively \(B \) with radius \(AB \). Let \(P \) and \(Q \) be the two intersection points of the circles \(c \) and \(d \). Let \(X \) be the intersection point of the line \(PQ \) and the line \(AB \).

(i) Show that \(AQP = BQP \).
(ii) Let \(Y \) be any point on the line \(PQ \). Show that \(AY = BY \).
(iii) Show that \(QXB \) and \(QXA \) are right angles. The line through \(P \) and \(Q \) will henceforth be called the **perpendicular bisector of** \(AB \).

b) Let \(K \) and \(L \) be parallel lines in the plane (i.e. lines which do not intersect). Let \(M \) be a third line which intersects \(K \) at an angle \(\alpha \). What can you say about the relationship between \(L \) and \(M \)? No justification is required.

c) Let \(ABC \) be a planar triangle. Let \(K \) be the perpendicular bisector of \(BC \) and let \(L \) be the perpendicular bisector of \(AC \). Show that \(K \) and \(L \) intersect.

d) Let \(ABC \) be a planar triangle. Show that there exists a circle which goes through \(A, B \) and \(C \).