Physics Department News
Faculty of Science, Engineering and Medicine Thesis Award
Congratulations to Dr Matthew Pearce who has been awarded the Faculty of Science, Engineering and Medicine Thesis Award. Matthew was awarded this for his thesis titled “Applied-magnetic-field studies of f-electron materials."
Matthew did his undergraduate degree at Warwick, before continuing to do his PhD in the Superconductivity and Magnetism Group under the supervision of Paul Goddard. During his PhD he used a variety of experimental techniques including magnetometry (torque, SQUID, VSM and pulsed-field compensated coil), electrical transport (traditional 4-wire and PDO), heat capacity and x-ray scattering. Matthew performed measurements at low temperatures and high magnetic fields, utilising both the in-house facilities in the laboratories at Warwick, as well as international high-field user facilities – where materials can be studied in some of the highest magnetic fields on earth.
Matthew's research focussed in part on Ho2Ir2O7, which belongs to a class of highly frustrated magnetic systems known as spin-ices, which are famous for hosting magnetic monopole quasiparticles. Matthew and his collaborators found that not only do measurements of the electrical resistance in these systems act as an indicator for the density of magnetic monopoles, but also that, mediated by the monopoles on the Ho sublattice, an applied magnetic field is able to manipulate the antiferromagnetic Ir domains, with potential applications to areas such as spintronics. He also studied the compound CeOs4Sb12, which had previously been found to undergo a valence transition. This is a transition where f electrons undergo a transformation from quasi-localised to itinerant with perhaps the most dramatic example being that of elemental Ce, which is accompanied by a volume collapse often quoted to be as large as 15 %. Matthew and his collaborators mapped out the phase boundary of this transition which exhibited an extremely unusual shape, owing to the influence of locally varying strain within the sample and quantum fluctuations.
Since completing his PhD he has been working at the University of Oxford with Radu Coldea studying quantum magnetism.