Skip to main content Skip to navigation

Events in Physics

Show all calendar items

James Kermode, Warwick

- Export as iCalendar
Location: PS1.28

Multiscale modelling of materials chemomechanics: from stress corrosion cracking to catastrophic brittle fracture

Fracture is one of the most challenging ‘multi-scale’ problems to model: since crack propagation is driven by the concentration of a long-range stress field at an atomically sharp crack tip, an accurate description of the chemical processes occurring in the small crack tip region is essential, as is the inclusion of a very large model systems. Both these requirements can be met by combining a quantum mechanical description of the crack tip with a classical atomistic model that captures the long-range elastic behaviour of the surrounding crystal matrix. Examples of the application of these techniques to fracture problems include: low-speed dynamical fracture instabilities in silicon [1]; interactions between moving cracks and material defects such as dislocations or impurities [2]; the crossover from thermally activated to catastrophic fracture; very slow crack propagation via kink formation and migration; chemically activated fracture, where cracks advance under the concerted action of stress and corrosion by chemical species such as oxygen or water [3].

[1]. J. R. Kermode et al., Nature 455, 1224-1227 (2008).
[2]. J. R. Kermode, et al., Nat. Commun. 4, 2441 (2013).
[3]. A. Gleizer et al. Phys. Rev. Lett. 112 115501 (2014).

Show all calendar items

Academic Leave Diary

Click here

 

Physics Days

Event listing

Research Group Events

Theory

CFSA

Astronomy

Particle Physics

Complexity

CSC

Condensed Matter Physics