Skip to main content Skip to navigation

Events in Physics

Monday, April 24, 2023

Select tags to filter on
Sun, Apr 23 Today Tue, Apr 25 Jump to any date

Search calendar

Enter a search term into the box below to search for all events matching those terms.

Start typing a search term to generate results.

How do I use this calendar?

You can click on an event to display further information about it.

The toolbar above the calendar has buttons to view different events. Use the left and right arrow icons to view events in the past and future. The button inbetween returns you to today's view. The button to the right of this shows a mini-calendar to let you quickly jump to any date.

The dropdown box on the right allows you to see a different view of the calendar, such as an agenda or a termly view.

If this calendar has tags, you can use the labelled checkboxes at the top of the page to select just the tags you wish to view, and then click "Show selected". The calendar will be redisplayed with just the events related to these tags, making it easier to find what you're looking for.

 
-
Export as iCalendar
Gianluca Gregori (Oxford): Transport of Charged Particles through Spatially Intermittent Turbulent Magnetic Fields
B2.04/2.05

Abstract: Galaxy clusters are filled with hot, diffuse X-ray emitting plasma, with a stochastically tangled and intermittent magnetic field whose energy is close to equipartition with the energy of the turbulent motions. In the cluster cores, the temperatures remain anomalously high compared to what might be expected considering that the radiative cooling time is short relative to the Hubble time. While feedback from the central active galactic nuclei is believed to provide most of the heating, there has been a long debate as to whether conduction of heat from the bulk to the core can help the core to reach the observed temperatures, given the presence of tangled magnetic fields. To address the problem of thermal conduction in a magnetized and turbulent plasma, we have created a replica of such a system at the National Ignition Facility laser, the largest laser laboratory in the world. Our data show a reduction of local heat transport by two orders of magnitude or more. While the diffusive transport of the highest energy charged particles appears to be unaffected by the spatial intermittency of the magnetic field, the diffusion of lower energy electrons is, instead, better described in terms of percolation. This, together with a cooling instability, leads to strong temperature variations on small spatial scales, as also observed in the intergalactic plasma. We conclude the talk by describing new Machine Learning techniques that can be used to infer effective transport coefficients from experimental data or simulations.

Placeholder