# Copy of Content blocks for course page

## Edit the course information

## #

- 0
- Physics BSc (F300)
- 0a
## Find out more about our Physics degree at Warwick

- 0c
- https://www.youtube.com/watch?v=a5fkxT-thSs
- 0-revisions

### Page updates

We have revised the information on this page since publication. See the edits we have made and content history.

- 2a
- F300
- 2b
- Bachelor of Science (BSc)
- 2c
- 3 years full-time
- 2d
- 26 September 2022
- 2e
- Department of Physics
- 2f
- University of Warwick
- 2g
This course is accredited by the Institute of Physics

- 3a
Physics deals with fundamental questions about the Universe, and key technological and environmental issues of our time. Warwick's Physics degree involves studying beautiful theories about the properties of space and matter. It also develops valuable transferable skills and expertise, opening doors to exciting careers and graduate job opportunities. Study with us and enjoy benefits that last a lifetime.

This course is accredited by the Institute of Physics.

- 3b
Designed to bring out the beauty and universality of physics, our flexible Physics course provides broad and in-depth teaching that's informed by our research.

Core modules introduce and develop the fundamental concepts, such as those of quantum theory and electromagnetism, and cover the mathematics used in physics. Optional modules provide opportunities to see how the basic concepts can explain the phenomena we observe.

For the final year project, you will work as a member of one of the research groups on a year-long project to explore aspects that are not yet fully understood. We encourage you to apply for summer placements and projects, which enable you to complete a small research project supervised by a member of the academic staff.

- 3c
The structure of the course reflects the structure of the subject. You will take core lecture modules (concentrated mainly in the first two years), which introduce and develop the fundamental concepts, such as those of quantum theory and electromagnetism, and cover the mathematics used in physics.

You will also choose modules from lists of options. These are largely concerned with seeing how the basic concepts can explain the phenomena we observe. Examples include the light emitted and absorbed by stellar matter, and the response of the liquids, solids and gases, which we meet on a daily basis, to the mechanical, electrical and thermal forces acting on them.

In the first year, you take essential (core) modules. In the second and third years there is considerable freedom to choose modules. By then you will have a good idea of your main interests and be well placed to decide which areas to study in greater depth. In effect you design your own degree.

- 3d
We provide a supportive and friendly environment in which to study. You will learn not just from the lectures and laboratories but also from interacting with others on the course, research students and your friends from outside physics.

- 3e
Lecture size will naturally vary from module to module. The first year core modules may have up to 350 students in a session, whilst the more specialist modules in the later years will have fewer than 100.

The core modules in the first year are supported by weekly classes, at which you and your fellow students meet in small groups with a member of the research staff or a postgraduate student.

Tutorials with your personal tutor are normally with a group of 5 students.

- 3f
You should expect to attend around 12 lectures a week and spend 7 hours on supervised practical (mainly laboratory and computing) work.

For each 1-hour lecture, you should expect to put in a further 1-2 hours of private study.

- 3g
In any year, about 30% of the overall mark is assigned to coursework.

The weighting for each year's contribution to your final mark is 10:30:60 for the BSc courses.

- 3h
### Study abroad

We support student mobility through study abroad programmes. BSc students have the opportunity to apply for an intercalated year abroad at one of our partner universities.

The Study Abroad Team offers support for these activities. The Department's Study Abroad Co-ordinator can provide more specific information and assistance.

- 4a
##### A level typical offer

A*AA to include A in Mathematics (or Further Mathematics) and Physics

##### A level contextual offer

We welcome applications from candidates who meet the contextual eligibility criteria and whose predicted grades are close to, or slightly below, the contextual offer level. The typical contextual offer is A*AB including A*, A in A Level Maths and Physics (any order). See if you’re eligible.

##### General GCSE requirements

Unless specified differently above, you will also need a minimum of GCSE grade 4 or C (or an equivalent qualification) in English Language and either Mathematics or a Science subject. Find out more about our entry requirements and the qualifications we accept. We advise that you also check the English Language requirements for your course which may specify a higher GCSE English requirement. Please find the information about this below.

- 4b
##### IB typical offer

38 to include 6 in Higher Level Mathematics ('Analysis and Approaches' only) and Higher Level Physics

##### IB contextual offer

We welcome applications from candidates who meet the contextual eligibility criteria and whose predicted grades are close to, or slightly below, the contextual offer level. The typical contextual offer is 36 including 6 in Higher Level Mathematics ('Analysis and Approaches' only) and 6 in Higher Level Physics. See if you’re eligible.

##### General GCSE requirements

Unless specified differently above, you will also need a minimum of GCSE grade 4 or C (or an equivalent qualification) in English Language and either Mathematics or a Science subject. Find out more about our entry requirements and the qualifications we accept. We advise that you also check the English Language requirements for your course which may specify a higher GCSE English requirement. Please find the information about this below.

- 4c
We welcome applications from students taking a BTEC qualification alongside A level Maths and Physics.

We may consider a BTEC qualification in a relevant Science or Engineering subject alongside A level Maths only on an individual basis.

- 5a
### Year One

###### Mathematics for Physicists

All scientists use mathematics to state the basic laws and to analyse quantitatively and rigorously their consequences. The module introduces you to concepts and techniques which will be assumed by future modules. These include: complex numbers, functions of a continuous real variable, integration, functions of more than one variable and multiple integration. You will revise relevant parts of the A-level syllabus, to cover the mathematical knowledge to undertake first year physics modules, and to prepare you for mathematics and physics modules in subsequent years.

###### Classical Mechanics and Special Relativity

You will study Newtonian mechanics emphasizing the conservation laws inherent in the theory. These have a wider domain of applicability than classical mechanics (for example they also apply in quantum mechanics). You will also look at the classical mechanics of oscillations and of rotating bodies. It then explains why the failure to find the ether was such an important experimental result and how Einstein constructed his theory of special relativity. You will cover some of the consequences of the theory for classical mechanics and some of the predictions it makes, including: the relation between mass and energy, length-contraction, time-dilation and the twin paradox.

###### Physics Foundations

You will look at dimensional analysis, matter and waves. Often the qualitative features of systems can be understood (at least partially) by thinking about which quantities in a problem are allowed to depend on each other on dimensional grounds. Thermodynamics is the study of heat transfers and how they can lead to useful work. Even though the results are universal, the simplest way to introduce this topic to you is via the ideal gas, whose properties are discussed and derived in some detail. You will also cover waves. Waves are time-dependent variations about some time-independent (often equilibrium) state. You will revise the relation between the wavelength, frequency and velocity and the definition of the amplitude and phase of a wave.

###### Electricity and Magnetism

You will largely be concerned with the great developments in electricity and magnetism, which took place during the nineteenth century. The origins and properties of electric and magnetic fields in free space, and in materials, are tested in some detail and all the basic levels up to, but not including, Maxwell's equations are considered. In addition, the module deals with both dc and ac circuit theory including the use of complex impedance. You will be introduced to the properties of electrostatic and magnetic fields, and their interaction with dielectrics, conductors and magnetic materials.

###### Physics Programming Workshop

You will be introduced to the Python programming language in this module. It is quick to learn and encourages good programming style. Python is an interpreted language, which makes it flexible and easy to share. It allows easy interfacing with modules, which have been compiled from C or Fortran sources. It is widely used throughout physics and there are many downloadable free-to-user codes available. You will also look at the visualisation of data. You will be introduced to scientific programming with the help of the Python programming language, a language widely used by physicists.

###### Quantum Phenomena

This module explains how classical physics is unable to explain the properties of light, electrons and atoms. (Theories in physics, which make no reference to quantum theory, are usually called classical theories.) It covers the most important contributions to the development of quantum physics including: wave-particle 'duality', de Broglie's relation and the Schrodinger equation. It also looks at applications of quantum theory to describe elementary particles: their classification by symmetry, how this allows us to interpret simple reactions between particles and how elementary particles interact with matter.

###### Astronomy

The Universe contains a bewildering variety of objects - black-holes, red giants, white dwarfs, brown dwarfs, gamma-ray bursts and globular clusters - to name a few. The module introduces these, and shows how, with the application of physics, we have come to know their distances, sizes, masses and natures. The module starts with the Sun and planets and moves on to the Universe as a whole.

###### Physics Laboratory

The module introduces experimental science and teaches the skills required for successful laboratory work. These include how to work with apparatus, how to keep a laboratory notebook, how to handle data and quantify errors and how to write scientific reports. The module also asks you to think critically and solve problems. Initial experiments build core skills while later experiments explore important areas of physics.

### Year Two

###### Statistical Mechanics, Electromagnetic Theory and Optics

Any macroscopic object we meet contains a large number of particles, each of which moves according to the laws of mechanics (which can be classical or quantum). Yet we can often ignore the details of this microscopic motion and use a few average quantities such as temperature and pressure to describe and predict the behaviour of the object. Why we can do this, when we can do this and how to do it are discussed in the first half of this module.

We also develop the ideas of first year electricity and magnetism into Maxwell's theory of electromagnetism. Establishing a complete theory of electromagnetism has proved to be one the greatest achievements of physics. It was the principal motivation for Einstein to develop special relativity, it has served as the model for subsequent theories of the forces of nature and it has been the basis for all of electronics (radios, telephones, computers, the lot...).

###### Quantum Mechanics and its Applications

In the first part of this module you will use ideas, introduced in the first year module, to explore atomic structure. You will discuss the time-independent and the time-dependent Schrödinger equations for spherically symmetric and harmonic potentials, angular momentum and hydrogenic atoms. The second half of the module looks at many-particle systems and aspects of the Standard Model of particle physics. It introduces the quantum mechanics of free fermions and discusses how it accounts for the conductivity and heat capacity of metals and the state of electrons in white dwarf stars.

###### Physics Skills

This module develops experimental skills in a range of areas and includes the design and testing of a functional electronic circuit. The module also introduces the concepts involved in controlling an experiment using a microcomputer. The module explores information retrieval and evaluation, and the oral and written presentation of scientific material.

**Mathematical Methods of Physicists**You will review the techniques of ordinary and partial differentiation and ordinary and multiple integration. You will develop your understanding of vector calculus and discuss the partial differential equations of physics. (Term 1) The theory of Fourier transforms and the Dirac delta function are also covered. Fourier transforms are used to represent functions on the whole real line using linear combinations of sines and cosines. Fourier transforms are a powerful tool in physics and applied mathematics. The examples used to illustrate the module are drawn mainly from interference and diffraction phenomena in optics. (Term 2)

### Year Three

###### Physics Project

The project will provide you with experience of working in a research environment. You will work, normally in pairs, on an extended project which may be experimental, computational or theoretical (or indeed a combination of these). Through discussions with your supervisor you will establish a plan of work which you will frequently review as you progress. In general, the project will not be closely prescribed and will contain an investigative element.

###### Communicating Science

Employers look for many things in would-be employees. Sometimes they will be looking for specific knowledge, but often they will be more interested in general skills, frequently referred to as transferable skills. One such transferable skill is the ability to communicate effectively, both orally and in writing. Over the past two years you may have had experience in writing for an academic audience in the form of your laboratory reports. The aim of this module is to introduce you to the different approaches required to write for other audiences. This module will provide you with experience in presenting technical material in different formats to a variety of audiences.

###### Quantum Physics of Atoms

The basic principles of quantum mechanics are applied to a range of problems in atomic physics. The intrinsic property of spin is introduced and its relation to the indistinguishability of identical particles in quantum mechanics discussed. Perturbation theory and variational methods are described and applied to several problems. The hydrogen and helium atoms are analysed and the ideas that come out from this work are used to obtain a good qualitative understanding of the periodic table. In this module, you will develop the ideas of quantum theory and apply these to atomic physics.

- 5b
- Condensed Matter Physics
- Scientific Computing
- The Earth and its Atmosphere
- Electrodynamics
- Plasma Physics and Fusion
- The Standard Model
- Galaxies and Cosmology
- Statistical Physics
- Physics of Life and Medicine
- Black Holes, White Dwarfs and Neutron Stars