Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

IM921 Visualisation

Fig 1

15/20/30 CATS - (7.5/10/15 ECTS)

Visualisations have become a fundamental currency for the exploration of data and the exchange of information. In this module we will explore this highly interdisciplinary subject from a wide variety of views - from cartography to statistics, to architecture and information design, and from science to the arts. Some of the labs and activities will involve coding and sketching activities, but there are no pre-requisites for this course. We encourage students from diverse backgrounds to bring their own perspective and skills to this exciting and interdisciplinary topic.

Module Convenor - Dr Greg McInerny
Additional Teaching Staff - Dr Nerea Calvillo

Indicative Syllabus

Week 2 to Week 5 - Lectures

Through these lectures we will use a variety of lenses in order to understand ‘visualisation’ as objects, a set of methods and as an interdisciplinary subject. We will start out by charting the origins of visualisation in mapping and quantitative graphics, and then exploring the contemporary boom in visualisation. The lectures will explore how we decode information from graphics, and how the effectiveness of a visualisation can depend on the task, data characteristics and a variety of literacies. After examining some of the frailties of visualisation (as a medium used to reveal and communicate) the topics will move into controversies that can uncover the science and art of visualisation. Finally we will turn to other forms of critique, using principles from Critical Cartography and Feminist Science and Technology Studies. What are the limits of visualisation?

Week 1 - Information Visualisation – Then & Now
Week 2 - The Fundamental Visualisation Principles told through Small Multiples
Week 3 - Decoding Errors and Precision
Week 4 - Controversies in Visualisation – visual junk, rainbows and censorship
Week 5 - Critical Visualisation – where are the limits of visualisation?

Week 2 to Week 5 - Coding Labs

In these weekly coding labs we will learn how to visualise data in ‘R’, the Statistical Computing Language. R is a great choice as it is free, user friendly, open source and is capable of straightforward calculations to the most complex of analyses. We do not expect any prior experience in coding, only that you have completed the introduction to R workshops. As highlighted in this NY Times article, R skills are in great demand wherever there is a need to understand data. Whether it is Business (Air BnB, Google), Data Analytics, Science, Government and NGOs, or Academia, R has become one of the ‘industry standards’ for data analysis and visualisation. And of course R is used in data journalism, including the BBC, Financial Times, 538 and the New York Times.

Week 1 – Introduction to Graphics in R
Week 2 - Formatting graphics in R
Week 3 - Layouts and Panels in R
Week 4 - R Packages and Project Work
Week 5 - Project work and Feedback

Week 7 – Week 10 Labs

In these weekly lab spaces we will experiment with how visualisations can be created in order to examine their affordances and the issues surrounding those affordances. Each week we will use different methods, tools and subjects as our experimental materials to investigate how visual encodings relate to data, spaces, ourselves and software. In doing this, the labs investigate how we might activate existing visualisations to enable or enact practical, symbolic or political interactions, or we may investigate how visualisations can be expanded and evolved by adding, twisting or eliminating design elements. Later on we will come back to software to document our experiences with online and open-source visualization tools, and to examine their relationship with ‘visualisation’ as we now know it. The module will conclude by encoding invisible and imperceptible conditions using physical interventions such as tagging, wrapping, colouring and techniques that demarcate aspects of our local environments.

Week 7 - Coding life
Week 8 - Activating visualizations
Week 9 - Making visualizations with datasets
Week 10 - Spatial visualizations


Fig 2

Illustrative Bibliography

Bertin, J. (2010). Semiology of Graphics: Diagrams, N

orks, Maps. Esri Press.

Cairo, A. (2012). The Functional Art: An Introduction to Information Graphics and Visualization. New Riders.
Few, S. (2013). Information Dashboard Design.

Meirelles, I. (2014). Design for Information - An Introduction to the Histories, Theories, and Best Practices Behind Effective Information Visualizations. Rockport.

Reas, C. and Fry, B. (2010). Getting Started with Processing. O’Reilly.

Reas, C. and Fry, B. (2014) Processing: A Programming Handbook for Visual Designers (Second Edition). MIT Press.

Reas, C. and McWilliams, C. (2010). Form+Code in Design, Art, and Architecture. Princeton Architectural Press.

Terzidis, K. (2009). Algorithms for Visual Design Using the Processing Language. Wiley.

Schiffman, D. (2012) The Nature of Code: Simulating Natural Systems with Processing.

Tufte, ER. (2001). The Visual Display of Quantitative Information. Graphics Press, USA.

Ware, C. (2012). Information Visualisation - perception for design. Morgan Kaufmann

Learning Outcomes

By the end of the module, students should be able to:

  • Demonstrate an understanding of visualisations and their usage in a wide variety of applications;
  • Explain the nature of visualisation as an interdisciplinary subject;
  • Demonstrate an understanding of the role of technology in changing visualisation practices;
  • Demonstrate an appreciation of the trade-offs involved in developing visualisations through examples;
  • Explain the range of affordances that different visualisations can offer through examples;
  • Evaluate visualisations in terms of users and tasks, and best practices and aesthetics;
  • Understand and demonstrate the core skills required to create effective visualisations.

Important Registration Information:

CIM Students

  • Please first discuss your optional module choices with you personal tutor during the personal tutor meetings and get their approval
  • Then complete and submit the optional module choice webform available in the CIM welcome page
  • The webform opens on 30th September at 14:00 BST and closes on 1st October at 15:00 BST
  • If there are any queries, please get in touch with Gheerdhardhini (PG Coordinator) via 

External Students

  • Computer Science – Please register your interest in the CIM module with the PG Administrator in your home department – Ms Sharon Hayes – by Week 1: Thursday, 8th October, 17.00 BST
  • All other external students - Please contact the CIM PG Coordinator (Gheerdhardhini) via email (, to request your optional module choice by Week 1 : Wednesday, 7th October, 17.00 BST.


  • Please be advised that you may be expected to have access to a laptop for some of these courses due to software requirements; the Centre is unable to provide a laptop for external students.
  • Please be advised that some modules may have restricted numbers and places are allocated according to availability.
  • Please note that a request does NOT guarantee a place on the module and is subject to availability.
  • Gaining permission of a member of CIM teaching staff or a member of staff from your home department or filling in the eVision Module Registration (eMR) system with the desired module does NOT guarantee a place on that module.
  • Requests after the specified deadline will not be considered.
  • CIM PG Coordinator will get back confirming your place in the module by 2nd October, Friday (For CIM students).
  • For external students - Only after confirmation of a place from CIM PG Coordinator can students’ or their home departments confirm their registration on eVision/MRM. Registrations by students who have not received confirmation of a place from CIM will be rejected via the system.

NOTE – The above-mentioned registration deadline also applies to the CIM optional modules running in Term 2. We will consider registrations again in the first week of Term 2, but only in relation to modules where there is availability.

We are normally unable to allow students (registered or auditing) to join/leave the module after the second week of it commencing.