Events in Physics
Michael Hartmann, Heriot Watt
Strongly Interacting Photons: Coherence, Correlations and Propagation
Light consists of photons, mass-less particles that do not interact with one another. Recent technological developments however give rise to structures with strong interactions between light and matter in multiple nodes of a network. These devices may enable us to drive photons into novel strongly correlated quantum many-body regimes. Interestingly, these may by studied in non-equilibrium scenarios where inevitable photon losses are constantly compensated by input drives. They thus give rise to an intriguing class of quantum many-body systems where instead of ground or thermal states one is interested in the still largely unexplored stationary states of their driven and dissipative dynamics.
In this talk, I will present some of our recent approaches to this physics that explore photon-photon correlations in chains of nonlinear resonators with coherent or incoherent pumping.
1) J. Ruiz-Rivas, E. del Valle, C. Gies, P. Gartner, and M. J. Hartmann, Spontaneous, collective coherence in driven, dissipative cavity arrays, Phys. Rev. A 90, 033808 (2014).
2) J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, Photon solid phases in driven arrays of non-linearly coupled cavities, Phys. Rev. Lett. 110, 163605 (2013)
3) M. J. Hartmann, Polariton crystallization in driven arrays of lossy nonlinear resonators, Phys. Rev. Lett. 104, 113601 (2010)
4) L. Neumeier, M. Leib, and M. J. Hartmann, Single Photon Transistor in Circuit Quantum Electrodynamics, Phys. Rev. Lett. 111, 063601 (2013).