Skip to main content Skip to navigation

Ultrafast & Terahertz Photonics: Publications

Filter by PI:

Filter by topic:

 

Select tags to filter on

Terahertz probe for real time in vivo skin hydration evaluation

Diagram

A.I. Hernandez-Serrano, X. Ding, J. Young, G. Costa, A. Dogra, J. Hardwicke and E. Pickwell-MacPherson
Advanced Photonics Nexus 3, 016012 (Feb 2024)

Fri 12 Apr 2024, 07:02 | Tags: THz spectroscopy, MacPherson, 2024, biomedical

Simultaneous measurement of orthogonal terahertz fields via an emission multiplexing scheme

Diagram

Huiliang Ou, Rayko Ivanov Stantchev, Xuequan Chen, Thierry Blu, Mykhaylo Semtsiv, William Ted Masselink, A. Hernandez Serrano, G. Costa, J. Young, N. Chopra, J. Lloyd-Hughes, and E. Pickwell-MacPherson
Optics Express 32, 5567 (Feb 2024)

Fri 02 Feb 2024, 16:17 | Tags: THz spectroscopy, THz components, MacPherson, 2024, Lloyd-Hughes

Spectroscopic insight on impact of environment on natural photoprotectants

Diagram

A. Whittock, X. Ding, X. Ramirez Barker, N. Auckloo, R. Sellers, J.M. Woolley V. Krishnan, C. Marine, C. Corre, E. Pickwell-MacPherson and V.G. Stavros
Chem. Sci. 14, 6763 (June 2023)

Wed 28 Jun 2023, 08:00 | Tags: THz spectroscopy, MacPherson, 2023, biomedical

The 2023 terahertz science and technology roadmap

Diagram

A. Leitenstorfer, ..., E. Pickwell-MacPherson, ... and J. Cunningham
J. Phys. D: Appl. Phys. 56, 223001 (April 2023)


Quantitative evaluation of transdermal drug delivery patches on human skin with in vivo THz-TDS

Diagram

X. Ding, G. Costa, A. I. Hernandez-Serrano, R.I. Stantchev, G. Nurumbetov, D.M. Haddleton, and E. Pickwell-MacPherson
Bio. Opt. Express 14, 1146 (Feb 2023)

Tue 06 Jun 2023, 22:02 | Tags: THz spectroscopy, MacPherson, 2023, biomedical, highlight

Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications

Diagram

X. Chen, H. Lindley-Hatcher, R. I. Stantchev, J. Wang, K. Li, A. I. Hernandez-Serrano, Z. D. Taylor, E. Castro-Camus and E. Pickwell-MacPherson
Chem. Phys. Rev. 3, 011311 (June 2022)

Wed 01 Jun 2022, 09:45 | Tags: THz spectroscopy, MacPherson, 2022, biomedical, review

Optimized multilayer structure for sensitive THz characterization of thin-film glucose solutions

Diagram

X. Ding, A. I. Hernandez-Serrano, H. Lindley-Hatcher, R. I. Stantchev, J. Zhou and E. Pickwell-MacPherson
Optics Express 30, 18079 (May 2022)

Sun 01 May 2022, 20:55 | Tags: THz spectroscopy, MacPherson, 2022

Simulated and Experimental Verification for a Terahertz Specific Finite Rate of Innovation Signal Processing Method

Diagram

X. E. Ramirez Barker, R. I. Stantchev, A. I. Hernandez-Serrano and E. Pickwell-MacPherson
Sensors 22, 3387 (April 2022)

Thu 21 Apr 2022, 12:00 | Tags: THz spectroscopy, MacPherson

Real time THz imaging—opportunities and challenges for skin cancer detection

Diagram

H. Lindley-Hatcher, R. I. Stantchev, X. Chen, A. I. Hernandez-Serrano, J. Hardwicke and E. Pickwell-MacPherson
Appl. Phys. Lett. 118, 230501 (June 2021)

Thu 10 Jun 2021, 12:30 | Tags: THz spectroscopy, MacPherson, THz imaging, biomedical, review, 2021

Low cost and long-focal-depth metallic axicon for terahertz frequencies based on parallel-plate-waveguides

Diagram

A. I. Hernandez-Serrano and E. Pickwell-MacPherson
Scientific Reports 11, 3005 (February 2021)

Thu 04 Feb 2021, 13:20 | Tags: THz components, MacPherson, THz imaging, 2021

Evaluation of in vivo THz sensing for assessing human skin hydration

Diagram

H. Lindley-Hatcher, A. I. Hernandez-Serrano, J. Wang, J. Cebrian, J. Hardwicke and E. Pickwell-MacPherson
J. Phys. Photonics 3, 014001 (December 2020)

Mon 14 Dec 2020, 13:00 | Tags: THz spectroscopy, MacPherson, biomedical, 2020

Exploiting Complementary Terahertz Ellipsometry Configurations to Probe the Hydration and Cellular Structure of Skin In Vivo

Diagram

X. Chen, Q. Sun, J. Wang, H. Lindley-Hatcher, E. Pickwell-MacPherson
Adv. Photonics Res. 2000024 (November 2020) [ pdf ] [ ref ]

Tue 10 Nov 2020, 10:00 | Tags: THz spectroscopy, MacPherson, biomedical, 2020

Evaluation of transdermal drug delivery using terahertz pulsed imaging

Diagram

J. Wang, H. Lindley-Hatcher, K. Liu, E. Pickwell-MacPherson
Biomedical Optics Express 11 4484 (August 2020) [ pdf ] [ ref ]

Thu 24 Sep 2020, 10:01 | Tags: MacPherson, THz imaging, biomedical, 2020

In-line evanescent-field-coupled THz bandpass mux/demux fabricated by additive layer manufacturing technology

Diagram

A. I. Hernandez-Serrano, S. J. Leigh and E. Pickwell-MacPherson
OSA Continuum 3, 2407 (August 2020)

Tue 25 Aug 2020, 12:45 | Tags: THz components, MacPherson, 2020

Real-time terahertz imaging with a single-pixel detector

R. I. Stantchev, X. Yu, T. Blu and E. Pickwell-MacPherson
Nature Communications 11 2535 (May 2020) [ pdf ] [ ref ] Stantchev 2020

Thu 09 Jul 2020, 22:23 | Tags: THz components, MacPherson, 2020

Broadband amplitude, frequency, and polarization splitter for terahertz frequencies using parallel-plate waveguide technology

A. I Hernandez-Serrano, D. M. Mittleman and E. Pickwell-MacPherson
Optics Letters 45 1208 (Feb 2020) [ pdf ] [ ref ]

SchematicIn this Letter, we report a broadband frequency/polarization demultiplexer based on parallel-plate waveguides (PPWGs) for terahertz (THz) frequencies. The fabrication and experimental validation of this polarization sensitive demultiplexer is demonstrated for the range from 0.2 to 1 THz. Upgrading the demultiplexer by adding a second demultiplexer stage, a fifty-fifty amplitude splitter is also demonstrated in the same frequency range. The multiplexer is based on a stainless-steel traveling-wave antenna, exhibiting strong mechanical robustness. This unique device exhibits three splitting mechanisms in the same device: amplitude, polarization, and frequency splitting. This is a significant improvement for the next generation of THz passive components for communication purposes.

Tue 25 Feb 2020, 12:00 | Tags: THz spectroscopy, THz components, MacPherson, 2020

A Robust Protocol for In Vivo THz Skin Measurements

H. Lindley-Hatcher, A. I Hernandez-Serrano, Q. Sun, J. Wang, J. Cebrian, L. Blasco, E. Pickwell-MacPherson
J Infrared Milli Terahz Waves 40 980 (August 2019) [ pdf ] [ ref ]

MethodThis work presents an experimental setup to control the way in which pressure interferes with the repeatability of in vivo THz skin measurements. By integrating a pressure sensor circuit into our THz system, it is possible to identify which measurements were taken within a previously specified pressure range. The live response of the pressure sensor helps to acquire data within the desired pressure leading to greater consistency of data between measurements. Additionally, a protocol is proposed to help achieve repeatable results and to remove the effects of the natural variation of the skin through the course of the day. This technique has been shown to be able to quantify the changes induced in the skin following the application of a moisturising skin product and shows the measured result to be significantly different from natural skin variation. This research therefore prepares the way for further studies on the effectiveness of different skin products using in vivo THz measurements.

Wed 28 Aug 2019, 09:00 | Tags: THz spectroscopy, MacPherson, 2019, biomedical

Scalable interdigitated photoconductive emitters for the electrical modulation of terahertz beams with arbitrary linear polarization

C.D.W. Mosley, M. Staniforth, A. I. Hernandez Serrano, E. Pickwell-MacPherson and J. Lloyd-Hughes
AIP Advances 9, 045323 (Apr 2019) [ pdf ] [ ref ]

A multi-element interdigitated photoconductive emitter for broadband THz polarization rotation is proposed and experimentally verified. The device consists of separate pixels for the emission of horizontally and vertically polarized THz radiation. The broadband (0.3–5.0 THz) nature of the device is demonstrated, and the polarization angle of the generated far-field THz radiation is shown to be readily controlled by varying the relative bias voltage applied to the horizontally and vertically emitting pixels. The device is scalable in design, and with its simple method of polarization rotation it allows the modulation of the generated THz polarization at rates significantly faster than those achievable in ellipsometry systems based on mechanically rotating components.

Fri 26 Apr 2019, 19:08 | Tags: THz components, MacPherson, Lloyd-Hughes, 2019

Utilizing multilayer structures to enhance terahertz characterization of thin films ranging from aqueous solutions to histology slides

Q. Sun, K. Liu, X. Chen, X. Liu, A. I Hernandez-Serrano, E. Pickwell-MacPherson
Optics Letters 44 2149 (April 2019) [ pdf ] [ ref ]

GeometryWe propose a multilayer geometry to characterize thin-film samples in reflection terahertz time domain spectroscopy. Theory indicates that this geometry has higher sensitivity compared to ordinary transmission or reflection geometries when characterizing both low- and high-absorption samples. Pure water and water–ethanol mixtures are measured to verify the characterization accuracy of the proposed geometry and its capability to measure trace liquids. Paraffin-embedded oral cancer tissue is imaged to further show how the proposed geometry enhances the sensitivity for solid low-absorptive films.

Wed 17 Apr 2019, 17:00 | Tags: THz spectroscopy, THz components, MacPherson, 2019, biomedical

Design and fabrication of 3-D printed conductive polymer structures for THz polarization control

A.I. Hernandez-Serrano, Q. Sun, E.G. Bishop, E.R. Griffiths, C.P. Purssel, S.J. Leigh, J. Lloyd-Hughes and E. Pickwell-MacPherson
Optics Express 27 8 11635 (April 2019) [ pdf ] [ ref ]

arturo2019.jpg

In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly.

Thu 11 Apr 2019, 16:40 | Tags: THz components, MacPherson, Lloyd-Hughes, 2019

Graphene controlled Brewster angle device for ultra broadband terahertz modulation

Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, K. Yan, R.I. Stantchev, E. Pickwell-MacPherson & J.-B. Xu
Nature Communications 9 4909 (November 2018) [ pdf ] [ ref ]

Chen 2018

Terahertz modulators with high tunability of both intensity and phase are essential for effective control of electromagnetic properties. Due to the underlying physics behind existing approaches there is still a lack of broadband devices able to achieve deep modulation. Here, we demonstrate the effect of tunable Brewster angle controlled by graphene, and develop a highly-tunable solid-state graphene/quartz modulator based on this mechanism. The Brewster angle of the device can be tuned by varying the conductivity of the graphene through an electrical gate. In this way, we achieve near perfect intensity modulation with spectrally flat modulation depth of 99.3 to 99.9 percent and phase tunability of up to 140 degree in the frequency range from 0.5 to 1.6 THz. Different from using electromagnetic resonance effects (for example, metamaterials), this principle ensures that our device can operate in ultra-broadband. Thus it is an effective principle for terahertz modulation.

Thu 29 Nov 2018, 07:41 | Tags: THz components, 2018, nanomaterials, MacPherson

Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in Situ Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites

Q. Sun, X. Liu, J. Cao, R.I. Stantchev, Y. Zhou, X. Chen, E.P.J. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson
J. Phys. Chem. C 122 17552 (June 2018) [ pdf ] [ ref ]

Sun 2018

Terahertz (THz) thin-film total internal reflection (TF-TIR) spectroscopy is shown to have an enhanced sensitivity to the vibrational properties of thin films in comparison with standard THz transmission spectroscopy. This increased sensitivity was used to track photoinduced modifications to the structure of thin films of methylammonium (MA) lead halide, MAPbI3–xBrx (x = 0, 0.5, 1, and 3). Initially, illumination strengthened the phonon modes around 2 THz, associated with Pb–I stretch modes coupled to the MA ions, whereas the 1 THz twist modes of the inorganic octahedra did not alter in strength. Under longer term illumination, the 1 THz phonon modes of encapsulated films slowly reduced in strength, whereas in films exposed to moisture and oxygen, these phonons weaken more rapidly and blue-shift in frequency. The rapid monitoring of environmentally induced changes to the vibrational modes afforded by TF-TIR spectroscopy offers applications in the characterization and quality control of the perovskite thin-film solar cells and other thin-film semiconductors.

Mon 06 Aug 2018, 13:51 | Tags: THz spectroscopy, 2018, MacPherson, perovskites, Lloyd-Hughes

Older papers (JLH only)