N. Chopra and J. Lloyd-Hughes J Infrared Milli Terahz Waves 44, 981 (Nov 2023)
Off-axis parabolic mirrors (OAPMs) are widely used in the THz and mm-wave communities for spectroscopy and imaging applications, as a result of their broadband, low-loss operation and high numerical apertures. However, the aspherical shape of an OAPM creates significant geometric aberrations: these make achieving diffraction-limited performance a challenge, and lower the peak electric field strength in the focal plane. Here, we quantify the impact of geometric aberrations on the performance of the most widely used spectrometer designs, by using ray tracing and physical optics calculations to investigate whether diffraction-limited performance can be achieved in both the sample and the detector plane. We identify simple rules, based on marginal ray propagation, that allow spectrometers to be designed that are more robust to misalignment errors, and which have minimal aberrations for THz beams. For a given source, this allows the design of optical paths that give the smallest THz beam focal spot, with the highest THz electric field strength possible. This is desirable for improved THz imaging, for better signal-to-noise ratios in linear THz spectroscopy and optical-pump THz-probe spectroscopy, and to achieve higher electric field strengths in non-linear THz spectroscopy.
A. Leitenstorfer, ..., E. Pickwell-MacPherson, ... and J. Cunningham J. Phys. D: Appl. Phys. 56, 223001 (April 2023)
Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation.
N. Chopra,J. Deveikis and J. Lloyd-Hughes Appl. Phys. Lett. 122061102 (Feb 2023)
The spatial profile of a beam of pulsed terahertz (THz) radiation is controlled electrically using a multi-pixel photoconductive emitter, which consists of an array of interdigitated electrodes fabricated on semi-insulating GaAs. Activating individual pixels allows the transverse position of the THz beam's focus to be varied off-axis, as verified by spatial beam profiles. Enabling multiple pixels simultaneously permits non-Gaussian beam shapes to be created. The diffraction-limited performance of the system is established by comparison with the Abbé and Sparrow criteria, and a condition for effective beam steering using this design is derived. The spatial resolution of the approach is linked to the frequency of the THz radiation and the f-number of the collection optic.
H. Lindley-Hatcher, R. I. Stantchev, X. Chen, A. I. Hernandez-Serrano, J. Hardwicke and E. Pickwell-MacPherson
Appl. Phys. Lett. 118, 230501 (June 2021)
It was first suggested that terahertz imaging has the potential to detect skin cancer twenty years ago. Since then, THz instrumentation has improved significantly: real time broadband THz imaging is now possible and robust protocols for measuring living subjects have been developed. Here, we discuss the progress that has been made as well as highlight the remaining challenges for applying THz imaging to skin cancer detection.
A. I. Hernandez-Serrano and E. Pickwell-MacPherson
Scientific Reports 11, 3005 (February 2021)
In this work we demonstrate a triangular surface lens (axicon) operating at frequencies between 350 and 450 GHz using parallel-plate-waveguide technology. The proposed axicon offers longer focal depth characteristics compared to conventional plastic lenses, surpassing common TPX lenses by one order of magnitude. Additionally, due to the triangular surface of the axicon, this device is able to focus THz radiation onto smaller areas than TPX lenses, enhancing the resolution characteristics of THz imaging systems. The frequency range of operation of the proposed axicon can be easily tuned by changing the space between plates, making this approach a very attractive candidate for low-cost, robust and easy to assemble solutions for the next generation of active THz devices.
J. Wang, H. Lindley-Hatcher, K. Liu, E. Pickwell-MacPherson
Biomedical Optics Express 11 4484 (August 2020) [ pdf ] [ ref ]
Transdermal drug delivery (TDD) is widely used for painless dosing due to its minimally invasive nature compared to hypodermic needle injection and its avoidance of the gastrointestinal tract. However, the stratum corneum obstructs the permeation of drugs into skin. Microneedle and nanoneedle patches are ways to enhance this permeation. In this work, terahertz (THz) imaging is utilized to compare the efficacy of different TDD methods including topical application and via a needle patch. Our work shows the feasibility and potential of using THz imaging to quantify and evaluate different transdermal application methods.