Reference and Bibliography Database on Research and Development with Pultruded Fibre Reinforced Polymer Shapes and Systems

Compiler: Professor J. Toby Mottram email: J.T.Mottram@warwick.ac.uk
Address: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.

Date: 01/07/19 Pages: 192 Entries: 2669

This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon, 'Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,' Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

76. Daniel R.A. Nagtegaal G., 'Pedestrian bridge of pultruded sections as result of ecological design,' in Proc. EPTA Seminar, EPTA, 2001, p ?.

87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

112. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copenhagen, 1996. ??

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

207. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

211. Shanmuganathn, S., 'Fibre reinforced polymer composite materials for civil and building structures - review of the state-of-the-art,' The Structural Engineer, 81 13, 2003, 26-33.

222. Tada, N., ‘Report on the damage to FRP water tanks by the Great Hanshin earthquake,’

224. ‘Technology roadmap for composites in the construction industry,’ National Composites

polymer-matrix composites – a review,’ Composites Science and Technology, 69 11, 2009,
301–329.

226. Thornburrow, P.R., ‘Current applications and future trends for fibre reinforced composites in
Lyon 1 University, 2005, 1019-1028.

227. Thorning, H. and Knudsen, E., ‘Design of the railway-crossing bridge at Kolding, Denmark,’ in
Proc. 4th EPTA World Pultrusion Conf., European Pultrusion Technology Association, The

228. Van Erp G. and Ayers, S., ‘A fair dinkum approach to fibre composites in civil engineering,’ in
Proc. 2nd Inter. Conf. Advanced Polymer Composites for Structural Applications in Construction

231. Whitaker, W.A. and Johnston, A., ‘Pultruded cable tray in the channel tunnel and other
enclosed situations,’ in Proc. 48th Annual Conf. Reinforced Plastics/Composite Institute, SPI/CI

232. Whitcher, D.A., ‘Development and production of heavy structural FRP composites for use as
primary structural components,’ in Proc. Composite Materials for Off Shore Operations,

234. Ye, L.P., Feng, P., Lu, X.Z., Qian, P., Huang, Y.L., Hu, W.H., Yue, Q.R., Yang, Y.X., Tan, Z, Yang, T.,
Zhang, N. and Li, R., ‘FRP in China: the state of FRP research, design guidelines and application
in construction,’ in Proc. 2nd Inter. Conf. FRP Composites in Civil Engineering — CICE 2004,
Taylor and Francis Group, London, 109-120.

236. Zoghi, M. (Ed.), ‘The Inter. handbook of FRP composites in civil engineering,’ Boca Raton,

JOURNALS, NEWSLETTERS AND MAGAZINES

244. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

245. Composite Design and Applications - The Source for Solutions and Technology. USA.

247. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

249. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

http://www.researchgate.net/publication/280719386_Strength_Retention_of_Pultruded_Composites_After_UV_Expose

doi: 10.1177/0731684415587411

doi: 10.1016/j.compstruct.2013.09.057

321. Chu, W. and Karbhari, V.M. ‘Synergistic hygrothermal effects on durability of E-glass vinylester composites,’ in Proc. 6th Inter. Symp. on Fibre-Reinforced Polymer - Reinforcement for

400. Herbert, ‘The influence of the process parameters on the mechanical properties of pultruded GRP-profiles,’ European Owen-Corning Fiberglass, Battice, Belgium, 1989. ??

439. Lackey, E., ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTM D 6641-01, University of Mississippi, Oxford, MS, USA.

444. Li, C.G., Xian, G.J. and Li, H. ‘Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures,’ Polymer, 10 6, 2008, Article No. 627. doi: 10.3390/polym10060627

467. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

482. Nguyen, T.T. Chan, T.M. and Mottram, J.T., ‘Reliable in-plane shear modulus for pultruded FRP shapes,’ Proceedings of the Institution of Civil Engineers - Structures and Buildings,

485. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

486. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA, St. Lois, MO, 2006. ??

496. Pour-Ghaz, M., Miller, B.L.H., Alla, O.K. and Rizkalla, S., ‘Do mechanical and environmental loading have a synergistic effect on the degradation of pultruded glass fiber reinforced polymers?’ Composites Part B-Engineering, 106, 2016, 344-355.

513. Runyan, M.C. and Jones, W.C., 'Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4 K,' Cryogenics, 48, 9-10, 2008, 448-454.

514. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., 'Residual strength testing in pultruded frp material under a variety of temperature cycles and values,' Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

for pultruded FRP,’ CTI TP04-08: Paperback 1904, Cooling Technology Institute, 2 November 2004.

Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention

Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures

Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

Vergani, L., ‘Damage mechanisms in pultruded unidirectional fiber reinforced composites under static and fatigue loads,’ Fracture and Damage of Composites, WIT 2006, pp. 49–72. DOI: 10.2495/978-1-85312-669-7/03

ELEMENT BEHAVIOUR

on Thin-Walled Structures (ICTWS 2018), held at Instituto Superior Técnico (IST), 2018, Paper 21.

doi: 10.1016/j.compositesb.2012.11.006

769. Choi, J.W., Lee, S., Joo, H.J., Sim, Y.J. and Yoon, S.J., ‘Form factor for the design of pultruded FRP structural members under compression,’ in Proc. 7th Pacific Rim Inter. Conf. on Advanced

824. Feo, L. and Mancusi, G., 'The influence of the shear deformations on the local stress state of pultruded composite profiles,' Mechanics Research Communications, 47, 2013, 44-49. DOI: 10.1016/j.mechrescom.2012.11.004

848. Han, H.P., Taheri, F., Pegg, N. and Ku, N., 'A numerical study on the axial crushing response of hybrid pultruded and +/- 45 degrees braided tubes,' Composite Structures, 80 2, 2007, 253-264.

867. Hollaway, L and Lee, J., ‘Discussion of the paper ‘Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding’ Composite Structures, 28 1, 1994, 121

869. Insausti, A., 'A design method for concentrically loaded FRP columns following the Eurocode,' in Proc. 8th Inter. Conf. on Composite Materials (Advancing with Composites 2005), AMME-ASMECCANICA, Università di Napoli, 2005, pg 1-7.

874. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

906. Lane, A. and Mottram, J.T., 'The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,' in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.

959. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,

69

patterns of pultruded composite tubes using cohesive elements and seam: Part II - Multiple delaminations and initial geometric imperfections,' Polymer Testing, 29 7, 2010, 803-814.

988. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??

1036. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplIntJ.v8.i1.10

1047. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.

1053. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

1075. Sirjani, M.B. and Razzaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1089. Svenson, A., Hargrave, M., Tabiei, A. and Bank, L., ‘Design of pultruded beams for roadside
1-7. ??

roadside safety structures,’ in Proc. 50th Annual Composite Institute Conf., Ohio, 1995, Session
10-D, pp. 1-7.

1091. Tabiei, A., Svenson, A. and Hargrave, M., ‘Impact behavior of pultruded composite box-

restrained edges subjected to shear and linearly varying,’ J. Reinforced Plastics and

1094. Tarján, G. and Kollár, L.P., ‘Buckling of axially loaded composite plates with restrained edges,’

1095. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber
Science and Technology, 1979, 12, 73-80.

1096. Teodosescu-Draghicescu, H., Vlase, S., Stanciu, M.D., Curtu, I. and Mihalcica, M., ‘Advanced
pultruded glass fibers-reinforced isophthalic polyester resin,’ Materiale Plastice, 52 1, 2015, 62-
64.

1097. Thomsen, O.T, and Kratmann, K.K., ‘Experimental characterisation of parameters controlling
the compressive failure of pultruded unidirectional carbon fibre composites,’ J. Applied
Mechanics and Materials (Volumes 24 - 25), Volume Advances in Experimental Mechanics VII,

1098. Thornton, P.H., ‘The crush behavior of pultruded tubes at high strain rates,’ J. Composite

1099. Thumrongvut J. and Seangatith, S., ‘Responses of PFRP cantilevered channel beams under tip
point loads,’ in Proc. 8th Inter. Conf. on Composite Science and Technology, Composite Science
583.

1100. Thumrongvut, J. and Seangatith, S., ‘Experimental study on lateral-torsional buckling of PFRP
cantilevered channel beams,’ in Proc. of 12th East Asia-Pacific Conf. on Structural Engineering
(2011), 2438-2445.

1101. Thumrongvut, J. and Seangatith, S., ‘On the structural responses of simply supported PFRP
channel beams under three-point loading,’ Inter. J. of Civil & Environmental Engineering
(IJCEE-IJENS), 11 04, 2011, 13-17.

1108. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Int. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, Tucson, 1996. 651-664.

1114. Turvey, G.J. and Zhang, Y., ‘Torsion of a pultruded GRP beam with bolted end connections: Test results and FE analysis,’ Proc. 4th Inter. Conf. of Advanced Composite Materials in Bridges

1145. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.

1162. Yuan, R.L. and Hashen, Z., ‘The effect of end support conditions on the behavior of GFRP composite columns,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, 1996, 621-627.

CONNECTIONS AND JOINTS

1331. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1334. Mcgrath G.C., 'Aspects of joining pultrusions,' http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

1382. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

1394. Oppe, M. and Knippers, J., ‘A consistent design concept for bolted connections in standardized GFRP-profiles,’ Proc. 5th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2010), September 27-29, 2010 Beijing, China, pp. 44.

1403. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

1427. Rietz, A., ‘Failure of bolt connection in fiber reinforced plastic component exposed to bending torque,’ Engineering Failure Analysis, 84, 2018, 109-120.

behavior of adhesively-bonded pultruded GFRP joints under different load ratios,’ Inter. J. of
Fatigue, 33 11, 2011, 1451-1460.

1440. Sarfaraz, R., Vassilopoulos, A.P. and Keller, T., ‘Variable amplitude fatigue of adhesively-

1441. Sarfaraz, R., Vassilopoulos, A.P. and Keller, Thomas, Modeling the constant amplitude fatigue
behavior of adhesively bonded pultruded GFRP joints,’ J. of Adhesion and Science and

1442. Saribiyik, M. and Gosling, P.D., ‘Modelling of a moulded FRP connector for pultruded section,’
in Proc. 7th Inter. Conf. on Fibre Reinforced Composites, FRC ’98 Consolidating New

1443. Satasivam, S., Feng, P., Bai, Y. and Caprani, C., ‘Composite actions within steel-FRP composite
beam systems with novel blind bolt shear connections,’ Engineering Structures, 138, 63-73.
DOI: 10.1016/j.engstruct.2017.01.068

1444. Saribiyik, M. and Gosling, P.D., 'Experimental study of a bonded plastic fiber reinforced

1445. Sciarretta, F., Russo, S., and Casalegno, C., ‘Experimental analysis of failure mechanisms in
doi: 10.1155/2018/5475347

of single-pin-bearing connections in pultruded FRP composites,’ in Proc. 8th Inter. Conference
on Advanced Composites in Construction (ACIC 2017), 5-7 September 2017, NetComposites

fracture of adhesively-bonded pultruded GFRP joints,’ Engineering Fracture Mechanics, 78 10,
2011, 2161-2173

1448. Shahverdi, M., Vassilopoulos, A.P. and Keller, T., ‘Experimental investigation of R-ratio effects
on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading,’
Issue: SI

1449. Shahverdi, M., Vassilopoulos, A.P. and Keller, T., ‘A total fatigue life model for the prediction of
the R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints,’
Issue: SI

1476. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

1488. Turvey, G.J., ‘Moment-rotation tests on bolted end connections in pultruded GRP beams – Tests with stainless steel cleats and an assessment of their performance relative to GRP

1552. Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

STRUCTURES AND BRIDGES

1686. Evernden M.C. and Mottram J.T., 'Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,' Advances in Structural Engineering, 14 6, 2011, 991-1004.

1759. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1760. Keller, T., and Gurtler, H., 'In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders,' Composite Structures, 72 2, 2006, 151-162.

1768. Keller, T., ‘Multifunctional and robust composite material structures for sustainable construction,’ in Proc. 5th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2010), Vol.

1924. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Int. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

2056. Zhan, Y., Wu, G., Yang, M. and Yang, L.S., ‘Experimental study on fast repair of equal-angle steel lattice column with GFRP pultruded profiles,’ in Proc. 7th Inter. Conf. on Advances in Steel Structures, Nanjing, China, Apr 14-16, 2012.

2068. Zheng, Y. and Motttram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

2174. Russo, S., ‘Shear and local effects in all-FRP bolted built-up columns,’ Advances in Structural Engineering, 18 8, 2015, 1227-1240.

2184. Turvey, G.J. and Slater, R.C., ‘Tests on pultruded GRP posts for handrail/barrier structures,’ in Proc. 1st Advanced Composite Materials in Bridges and Structures (ACMB/1), Canada Society for Civil Engineers (CSCE), 1992, 319-329.

2185. Turvey, G.J. and Mulcahy, N., 'Free vibration of clamped pultruded GRP circular plates with central circular cut-outs,' in Proc. 4th Inter. Conf. on Thin-Walled Structures (ICTWS 2004), 2004, 927-934.

DESIGN MANUALS AND ASSOCIATED MATERIAL

2196. Anon., ‘EXTREN design manual.’ Morrison Molded Fiber Glass Co., Bristol, Va, 1989. Addendum 1990, 1995. (Strongwell from 1 July 1997) http://www.strongwell.com/member-options/?_s2member_vars=post..level..0..post..134..L3Rvb2xzL2Rlc2lnbi1tYW51YWwv&_s2member_sig=1477162888-8b4100ac50f697a87fb6ef5f9a6ecb70

2224. CTI. ‘CTI fastener material guidelines - FMG-144 (94),’ Cooling Technology Institute, Houston, July 1994.

2226. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2229. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2233. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

2250. Lesko, J.J. and Cousins, T.E., ‘EXTREN DWB® design guide - 8”x6” EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,’ Strongwell Cop., 2003.

2262. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

2280. 'Recommended practice for fibre-reinforced polymer products for overhead utility line structures,' ASCE manuals and reports on engineering practice No. 104, ASCE Reston, 2002.

DESIGN GUIDANCE, STANDARDS AND PATENTS

2284. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA)), American Society of Civil Engineers, 9 November 2010, p. 189. (not in public domain)

2289. ‘Structural design of FRP components,’ CTI Bulletin ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2318. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2326. ‘Standard practice for classifying visual defects in thermosetting plastic pultruded shapes,’ D4385-08, ASTM, West Conshohocken, Pa, 2008.

2329. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

CONFERENCE PROC.

2361. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2387. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.

2395. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Bieijing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghus University Press, 2010.

2399. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESES

 file:///C:/Users/esrgb/Downloads/Daniel_Carlos_Taissum_Cardoso_doutorado.pdf

2426. Carreiro, A., 'Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),' Dissertação para obtenção de grau de mestre em Engenharia Civil, Instituto Superior Técnico, Lisboa, Maio 2010. (in Portuguese)

 http://repository.tudelft.nl/view/ir/uuid%3A6dd0caf0-3128-4200-93a5-104ebbbc135f/

2434. Coleman, J. T., 'Continuation of field and laboratory tests of a proposed bridge deck panel fabricated from pultruded fiber-reinforced polymer components,' MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2002.

2458. Garland, C.A., 'Effect of manufacturing process conditions on the durability of pultruded vinyl ester/glass composites,' MSE Thesis, West Virginia University, Morgantown, West Virginia, 2000. 125 pages http://wvuscholar.wvu.edu:8881/exlibris/dtl/d3_1/apache_media/L2V4bGl0cm1zL2R0bC9kM18xL2FwYWN0ZV9tZWRpYS81MDY4.PDF

2476. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

http://wvuscholar.wvu.edu:8881/R/?func=dbin-jump-full&object_id=6827

2502. Liu, X., 'A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,' MS thesis, California State University, Fullerton, USA, 2000. 149 pages

2511. McMahon, A.R., ‘Design, construction and testing of a glass reinforced plastic bonded truss frame,’ Final Year Project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CEEQFjAA&url=http%3A%2F%2Fannali.unife.it%2Fiuss%2Fdownload%2F341%2F294%2F1&ei=3MMZUrn1Fib0QWbroGwBw&usg=AFQjCNF7SYo8-04h1pxEoU3g325Rtg4B&bvm=bv.51156542,d.d2k

2535. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

2543. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.

2546. Reising, R.M.W., 'Field testing and long-term monitoring of a five-span bridge with FRP decks,' PhD dissertation, University of Cincinnati, Cincinnati, 2002.

2567. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

WEB SITES

2599. Access Design and Engineering http://www.access-design.co.uk/

2600. Ahlstrom Corporation (Glassfibre) www.ahlstrom.com/

2601. American Composites Manufacturers Association (ACMA) www.cfa-hq.org

2602. Anglia Composites Ltd. www.angliacomposites.co.uk

2604. Bakaert Composites http://www.bekaert.com/

2605. The British Plastics Federation http://www.bpf.co.uk/

2606. Captrad, UK http://www.captrad.com/

2607. CTS Bridges, Huddersfield, UK http://www.ctsbridges.co.uk/ https://www.youtube.com/watch?v=CSn8_wNZLcg

2608. Comfort line (door and windows) http://www.comfortlineinc.com/

2609. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/

2610. Composite Cooling Solutions http://compositecooling.com/ (Cooling towers)

2612. Composites UK (trade organization) https://compositesuk.co.uk/ Construction Sector Group

2613. Composites z http://www.compositez.com/

2615. Cooling Technology Institute, Houston http://www.cti.org/

2616. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/

2618. Deck Industry Association http://www.deckindustry.org/resources.htm

2621. DRB Industries http://www.drbcoolingtowers.com/pultruded_frp.php

2622. Dura Composites http://www.duracomposites.com/ high quality flooring and cladding

2623. EPI, fabricator (Texas, USA) http://engpro.com/

2625. EPTA (European Pultrusion Technology Association) http://pultruders.org/

2626. Exel Composites (UK) http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd.)

2627. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2628. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), (USA) http://www.fibergrate.com/

2629. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), (UK) http://www.fibergrate.co.uk/

2630. Fiberline Composites A/S (Denmark) http://www.fiberline.com/

2632. Fibrolux GMBH (Germany) http://fibrolux.com/

2633. Genesis Composites (UK) http://www.genesiscomposites.co.uk/

2635. GDP Koral, s.r.o. http://www.gdpkoral.cz
2636. IFE Pultrusion Exchange http://www.fiberglass.com/fiberglass/a/fg5005.html
2637. IIFC (Inter. Institute for FRP in Construction) http://www.iific-hq.org/
2638. ISIS Canada http://www.isiscanada.com/
2642. Lee Composites, Inc. www.leecomposites.com
2643. Liberty Pultrusions (West Mifflin, Pa.) http://www.libertypultrusions.com/
2644. Lionweld Kennedy, fabricator (UK) http://www.lk-uk.com/
2645. Martin Pultrusion Group http://www.martinpultrusion.com/
2646. NetComposites (UK) http://www.netcomposites.com
2648. Pipex px, fabricator (UK) https://www.pipexpx.com/
2649. Polymec, Madrid, Spain http://polymec.com/
2651. PPG Industries UK Ltd. http://ppg.com
2653. Pultrec (UK) http://www.pultec.com/
2654. Pultron Composites http://www.pultron.com/ (New Zealand)
2655. Pultrusion Industry Council (USA) http://www.pultrusionindustry.org/
2658. Röchling (Germany) http://www.roechling-haren.de/
2660. Seasafe (pultruder) http://www.seasafe.com/
2661. Strongwell http://www.strongwell.com
2662. SXP Cooling technologies http://spxcooling.com/
2663. Top Glass SpA http://www.topglass.it
2664. Tufnol (UK) http://www.tufnol.com/
2665. Universal Pultrusions (door systems for corrosive industrial applications) (Arizona, USA)
2667. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/
2668. Yprado http://www.yprado.eu/ windows and doors
2669. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/

J. T. Mottram ©