Reference and Bibliography Database on Research and Development with Pultruded Fibre Reinforced Polymer Shapes and Systems

Compiler: Professor J. Toby Mottram email: J.T.Mottram@warwick.ac.uk
Address: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.

?? - Incomplete details bold font – to be published

Date: 01/05/19 Pages: 190 Entries: 2649

This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

66. Busel, J., ‘State of the North American pultrusion industry – An examination of the the pultrusion industry, plus update on the LRFD design standard,’ Composite Manufacturing, April, 2008, 28-54. (not every page)

76. Daniel R.A. Nagtegaal G., ‘Pedestrian bridge of pultruded sections as result of ecological design,’ in Proc. EPTA Seminar, EPTA, 2001, p ?.

87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

http://www.tim-daly.co.uk/PolymerDownload1.pdf

http://www.tim-daly.co.uk/PolymerDownload3.pdf

109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

206. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

JOURNALS, NEWSLETTERS AND MAGAZINES

243. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

244. Composite Design and Applications - The Source for Solutions and Technology. USA.

246. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

248. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

http://doc.utwente.nl/92118/1/EPTA2014_Abstact_Ismet%20Baran.pdf

doi: 10.1177/0731684415587411

doi: 10.1016/j.compstruct.2013.09.057

375. Grammatikos, S.A., Ball, R.J., Evernden, M. and Jones, R.G., ‘Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during service,’ Composites Part

397. Helbling, C. and Karbhari, V.M., ‘Durability assessment of combined environmental exposure and bending, in Proc. 7th Inter. Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, SP-230-79, 2005, 1397-

399. Herbert, 'The influence of the process parameters on the mechanical properties of pultruded GRP-profiles,' European Owen-Corning Fiberglass, Battice, Belgium, 1989. ??

438. Lackey, E., ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTM 6641-01, University of Mississippi, Oxford, MS, USA.

443. Li, C.G., Xian, G.J. and Li, H. ‘Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures,’ Polymer, 10 6, 2008, Article No. 627. doi: 10.3390/polym10060627

466. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

484. Park, J.Y. and Zureick, A.H. ‘Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,’ Polymer Composites, 26 2, 2005, 181-192.

485. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA, St. Lois, MO, 2006. ??

495. Pour-Ghaz, M., Miller, B.L.H., Alla, O.K. and Rizkalla, S., ‘Do mechanical and environmental loading have a synergistic effect on the degradation of pultruded glass fiber reinforced polymers?’ Composites Part B-Engineering, 106, 2016, 344-355.

513. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ‘Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention
Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures
Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

Zhang, S.H., Caprani, C.C. and Heidarpour, A., ‘Strain rate studies of pultruded glass fibre reinforced polymer material properties: A literature review,’ Construction and Building Materials, 171, 2018, 984-1004. doi: 10.1016/j.conbuildmat.2018.03.113

Zureick, A., Beghaus, D., Park, J. and Cho, B., ‘Shear properties of pultruded composite materials,’ SEM 97-2, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 1997, USA.

ELEMENT BEHAVIOUR

663. Ascione, L, Berardi, V.P., Giordano, A. and Spadea, S., ‘Local buckling analysis of pultruded FRP thin-walled beams and columns,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 352, 2012, pp. 10.

754. Cardoso, D., Harries, K.A. and Batista, E.M, ‘Compressive local buckling of pultruded GFRP I-sections: Development and numerical/experimental evaluation of an explicit equation,’ J. of

768. Choi, J.W., Lee, S., Joo, H.J., Sim, Y.J. and Yoon, S.J., ‘Form factor for the design of pultruded FRP structural members under compression,’ in Proc. 7th Pacific Rim Inter. Conf. on Advanced

821. Feo, L. and Penna, R., ‘On the behavior of web-flange junctions of GRP pultruded profiles,’ in Proc. of Riga Technical University 53rd Inter. Scientific conference dedicated to the 150th

865. Hollaway, L and Lee, J., ‘Discussion of the paper ‘Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding’ Composite Structures, 28 1, 1994, 121

872. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

904. Lane, A. and Mottram, J.T., ‘The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,’ in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.

956. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,

985. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??

1033. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplInt.v8.i1.10

1044. Seangatith, S., 'Structural behavior of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.

1050. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

1072. Sirjani, M.B. and Razzaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1092. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.

1099. Thumrongvut, J. and Seangatith S., ‘Experimental evaluation on fixed end supported PFRP channel beams and LRFD approach,’ in Proc. Inter. Conf. on Vibration, Structural Engineering

1105. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, Tuson, 1996. 651-664.

1142. Wong, P.M.H., ‘Performance of GRP composite structures at ambient and elevated temperatures,’ The Structural Engineer, 81 15, 2003, 10 & 12.

1144. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,’ Composite Structures, 81 1, 2007, 84-95.

1159. Yuan, R.L. and Hashen, Z., ‘The effect of end support conditions on the behavior of GFRP composite columns,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, 1996, 621-627.

CONNECTIONS AND JOINTS

1327. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1330. Mcgrath G.C., ‘Aspects of joining pultrusions,’ http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

Mottram, J.T., ‘Rationale for simplifying the strength formulae for the design of multi-row bolted connections failing in net tension,’ in Proc. 6th Inter. Conf. on Advanced Composites in Construction, NetComposites Ltd., Chesterfield, UK, 2013, 383-392.

1399. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

1422. Rietz, A., ‘Failure of bolt connection in fiber reinforced plastic component exposed to bending torque,’ Engineering Failure Analysis, 84, 2018, 109-120.

1424. Robinson, A., ‘A study into the behaviour of FRP bolted connections,’ An Engineering Research Project Final Report (ENG4111 and ENG4112) towards the degree of Bachelor of Civil

1471. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

review on design, testing, analysis and applications of polymeric composite connections, European Commission, Brussels/Luxembourg, July 1998, Chapter 2, 15-26.

1508. Turvey, G.J. and Cerutti, X., ‘Effects of splice joint geometry and bolt torque on the serviceability response of pultruded glass fibre reinforced polymer composite beams,’ Composite Structures, 131, 2015, 490-500. DOI: 10.1016/j.compstruct.2015.05.030

1547. Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

STRUCTURES AND BRIDGES

1681. Evernden M.C. and Mottram J.T., ‘Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,’ Advances in Structural Engineering, 14 6, 2011, 991-1004.

Conference Energy Management of Municipal Transportation Facilities and Transport, EMMFT 2017,

1753. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

Advancements and Challenges (Hao & Zhang (Eds)), Taylor and Francis Group, London, 2016, 1523-1528.

1914. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

2042. Zhan, Y., Wu, G., Yang, M. and Yang, L.S., ‘Experimental study on fast repair of equal-angle steel lattice column with GFRP pultruded profiles,’ in Proc. 7th Inter. Conf. on Advances in Steel Structures, Nanjing, China, Apr 14-16, 2012.

2054. Zheng, Y. and Mottram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

2152. Okeil, A.M., ‘Characterization of mechanical properties of composite materials for infrastructure projects,’ Final report on Project # 13-02 to United States Department of Transportation, Gulf Coast Research Center for Evacuation and Transportation Resiliency, LSU

2160. Russo, S., ‘Shear and local effects in all-FRP bolted built-up columns,’ Advances in Structural Engineering, 18 8, 2015, 1227-1240.

2170. Turvey, G.J. and Slater, R.C., ‘Tests on pultruded GRP posts for handrail/barrier structures,’ in Proc. 1st Advanced Composite Materials in Bridges and Structures (ACMB/1), Canada Society for Civil Engineers (CSCE), 1992, 319-329.

DESIGN MANUALS AND ASSOCIATED MATERIAL

2210. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2212. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2215. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Int. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2219. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

2248. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

DESIGN GUIDANCE, STANDARDS AND PATENTS

2270. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA), American Society of Civil Engineers, 9 November 2010, p. 216. (not in public domain)

http://www.archbau.zhaw.ch/fileadmin/user_upload/architektur/dokumente/fvk/Lehre_und_Weiterbildung/2010_BUEV_Empfehlungen.PDF or

2275. ‘Structural design of FRP components,’ CTI Bulletin ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2304. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2312. ‘Standard practice for classifying visual defects in thermosetting plastic pultruded shapes,’ D4385-08, ASTM, West Conshohocken, Pa, 2008.

2315. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

2320. 'Standard practice for classifying reinforced plastic pultruded shapes according to composition,' D3647-09, ASTM, West Conshohocken, Pa, 2009.

2321. ‘Flexural properties of fiber reinforced pultruded plastic rods,’ D4476-09, ASTM, West Conshohocken, Pa, 2009.

CONFERENCE PROC.

2347. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2373. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.

2379. Brisk Events (Ed.), 2nd World Pultrusion Conf. in Baltimore, 21-22 May, 2009, USA.

2381. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Bieijing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghus University Press, 2010.

2385. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESES

https://smartech.gatech.edu/jspui/bitstream/1853/7187/1/bennett_evan_a_200508_mast.pdf

http://www.ccny.cuny.edu/profiles/upload/David-Borowicz-PhD-2010.pdf

http://www.ung.si/~library/doktorati/konzervatorstvo/1Boscato.pdf

http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1964&context=etd

2411. Carreiro, A., 'Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),’ Dissertação para obtenção de grau de mestre em Engenharia Civil, Instituto Superior Técnico, Lisboa, Maio 2010. (in Portuguese)

 http://scholar.lib.vt.edu/theses/available/etd-12052003-154555/

2459. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2484. Liu, X., 'A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,' MS thesis, California State University, Fullerton, USA, 2000. 149 pages

2493. McMahon, A.R., ‘Design, construction and testing of a glass reinforced plastic bonded truss frame,’ Final Year Project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

2517. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

2525. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.

2548. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

WEB SITES
2579. Access Design and Engineering http://www.access-design.co.uk/
2580. Ahlstrom Corporation (Glassfibre) www.ahlstrom.com/

2581. American Composites Manufacturers Association (ACMA) www.cfa-hq.org

2582. Anglia Composites Ltd. www.angliacomposites.co.uk

2585. The British Plastics Federation http://www.bpf.co.uk/

2587. CTS Bridges, Huddersfield, UK http://www.ctsbridges.co.uk/
https://www.youtube.com/watch?v=CSn8_wNzLc

2589. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/

2592. Composites UK (trade organization) https://compositesuk.co.uk/ Construction Sector Group

2596. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/

2598. Deck Industry Association http://www.deckindustry.org/resources.htm

2600. Dow Deutschland Inc. http://www.dow.com

2603. EPI, fabricator (Texas, USA) http://engpro.com/

2604. Engineering Composites Ltd. http://www.engineered-composites.co.uk
2605. EPTA (European Pultrusion Technology Association) http://pultruders.org/

2606. Exel Composites (UK) http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd.)

2607. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2608. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), (USA) http://www.fibergrate.com/

2609. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), (UK) http://www.fibergrate.co.uk/

2612. Fibrolux GMBH (Germany) http://fibrolux.com/

2613. Genesis Composites (UK) http://www.genesiscomposites.co.uk/

2615. GDP Koral, s.r.o. http://www.gdpkoral.cz

2617. IIFC (Inter. Institute for FRP in Construction) http://www.iifc-hq.org/

2619. James Quinn Associates Ltd. http://www.jqal.co.uk/

2624. Lionweld Kennedy, fabricator (UK) http://www.lk-uk.com/

2626. NetComposites (UK) http://www.netcomposites.com

2627. Owens Corning Inc. http://www.owenscorning.com

2628. Pipex px, fabricator (UK) https://www.pipexpx.com/
2629. Polymec, Madrid, Spain http://polymec.com/

2631. PPG Industries UK Ltd. http://ppg.com

2633. Pultrec (UK) http://www.pultec.com/

2634. Pultron Composites http://www.pultron.com/ (New Zealand)

2635. Pultrusion Industry Council (USA) http://www.pultrusionindustry.org/

2638. Röchling (Germany) http://www.roechling-haren.de/

2640. Seasafe (pultruder) http://www.seasafe.com/

2641. Strongwell http://www.strongwell.com

2642. SXP Cooling technologies http://spxcooling.com/

2643. Top Glass SpA http://www.topglass.it

2644. Tufnol (UK) http://www.tufnol.com/

2647. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/

2648. Yprado http://www.yprado.eu/ windows and doors

2649. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/

J. T. Mottram ©