This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

77. Daniel R.A. Nagtegaal G., 'Pedestrian bridge of pultruded sections as result of ecological design,' in Proc. EPTA Seminar, EPTA, 2001, p ?.

88. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

102. Goldworthy W.B., ‘Composites just another building material - Only better,’ in Proc. 40th Inter. SAMPE Symposium and Exhibition, Anaheim Convention Center, SAMPE, 40, 1, 1995, 504-512.

111. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

114. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copehagen, 1996. ??

115. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

135. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

140. Keller, T., ‘New bridges and buildings constructed from translucent GFRP sandwich panels and glued GFRP elements,’ in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers, 2000, 785-792.

153. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

209. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

JOURNALS, NEWSLETTERS AND MAGAZINES

246. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

247. Composite Design and Applications - The Source for Solutions and Technology. USA.

249. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

251. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

297. Benfratello, S., Fiore, V., Palizzolo, L. and Tabbuso, P., ‘Speckle interferometry analysis of full-bending behavior of GFRP pultruded material,’ in Proc. of World Multidisciplinary Civil

323. Chouchaoui, B., ‘Composite Pultrusions Optimization via Laboratory Materials Characterization and FEA,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

402. Helbling, C. and Karbhari, V.M., ‘Durability assessment of combined environmental exposure and bending, in Proc. 7th Inter. Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, SP-230-79, 2005, 1397-

443. Lackey, E, ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTMD 6641-01, University of Mississippi, Oxford, MS, USA.
 http://www.acmanet.org/meetings/2012_composites/tuesday/121-Lackey-Ellen-.pdf

448. Li, C.G., Xian, G.J. and Li, H. ‘Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures,’ Polymer, 10 6, 2008, Article No. 627. doi: 10.3390/polym10060627

472. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

492. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

493. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA, St. Lois, MO, 2006. ??

521. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ‘Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

572. Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention

573. Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications

574. Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures

575. Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

588. Wang, Y. and Zureick, A-H., ‘Characterization of the tensile behavior of pultruded composite I-
shape structural members using coupon specimens,’ Composite Structures, 29 4, 1994, 463-
472.

interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer
(B/G/CFRP) bars in seawater sea sand concrete environment.’ Construction and Building

590. Wen, L., Feng, P. and Huang, J., ‘Bilinear softening model and double K fracture criterion for
quasi-brittle fracture of pultruded FRP composites,’ Composite Structures, 160, 2017, 1119-
1125.

591. Xin, H., Liu, Y., Mosallam, A., Zhang, Y. and Wang, C., ‘Hygrothermal aging effects on flexural
behavior of pultruded glass fiber reinforced polymer laminates in bridge applications,’
Construction and Building Materials, 127, 2016, 237–247. doi:
10.1016/j.conbuildmat.2016.09.151

on shear behavior of pultruded FRP composite web-flange junctions in bridge application,’

593. Xin, H., Liu, Y., Mosallam, A.S., He, J. and Du, A., ‘Evaluation on material behaviors of pultruded
glass fiber reinforced polymer (GFRP) laminates,’ Composite Structures, 182 2017, 283-300.

and interfacial performance of pultruded glass fiber-reinforced polymer composites,’ Journal

596. Ye, B.S., Svenson, A.L. and Bank, L.C., ‘Mass and volume fraction properties of pultruded glass-

597. Yu, B., Till, V. and Thomas, K., ‘Modeling of thermo-physical properties for FRP composites
under elevated and high temperature,’ Composite Science and Technology, 67 15-16, 2007,
3098-3109. Yu, B is also Bia, Y.

fiber/vinyl ester resin composite for sucker rod application,’ J. of Reinforced Plastics and

599. Yu, Y.H., Li, P., Sui, G., Yang, X.P. and Liu, H.L. ‘Effects of hygrothermal aging on the thermal-
mechanical properties of vinylester resin and its pultruded carbon fiber composites,’ Polymer
Composites, 30 10, 2009, 1458-1464.

600. Yuan, J.S. and Hadi, M.N.S., ‘Friction coefficient between FRP pultruded profiles and concrete,’

601. Yuksel, O., Baran, I., Ersoy, N. and Akkerman, R, ‘Analysis of residual transverse stresses in a
thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image
correlation,' in Proc. of 21st Inter ESAFORM Conf. on Material Forming (ESAFORM), Univ. of Palermo, Palermo, Italy, 2018, AIP Conference Proc., Vol. 1960, Article No. UNSP 020040.

609. Zureick, A., Beghaus, D., Park, J. and Cho, B., 'Shear properties of pultruded composite materials,' SEM 97-2, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 1997, USA.

STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING

ELEMENT BEHAVIOUR

858. Han, H.P., Taheri, F., Pegg, N. and Ku, N., 'A numerical study on the axial crushing response of hybrid pultruded and +/- 45 degrees braided tubes,' Composite Structures, 80 2, 2007, 253-264.

877. Hollaway, L and Lee, J., ’Discussion of the paper ‘Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding’ Composite Structures, 28 1, 1994, 121

884. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

916. Lane, A. and Mottram, J.T., ‘The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,’ in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.

918. Laudiero, F., Minghini, F., Ponara, N. and Tullini, N., ‘Buckling resistance of pultruded FRP profiles under pure compression or uniform bending-numerical simulation,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 085, 2012, pp. 8.

969. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,

1046. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplIntJ.v8.i1.10

1057. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.

1063. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

1082. Silvestre, N. and Camotim, D. 'Buckling behaviour of FRP thin-walled lipped channel members,' in Proc. of 8th Int. Conf. on Civil and Struct., Eng. Comp., (2001), 77-78.

1086. Sirjani, M.B. and Razzaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1106. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.

1113. Thumrongvut, J. and Seangatith S., ‘Experimental evaluation on fixed end supported PFRP channel beams and LRFD approach,’ in Proc. Inter. Conf. on Vibration, Structural Engineering

1119. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP l-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, Tucson, 1996. 651-664.

1156. Wong, P.M.H., ‘Performance of GRP composite structures at ambient and elevated temperatures,’ The Structural Engineer, 81 15, 2003, 10 & 12.

1158. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,’ Composite Structures, 81 1, 2007, 84-95.

1175. Yuan, R.L. and Seangatith, S., 'Vibration analysis of simply supported pultruded GFRP composite beams under dynamic loads,' in Proc. 3rd Inter. Conf. on Composite Engineering, New Orleans, Louisiana, USA, 1996.

1176. Yuan, R.L. and Seangatith, S., 'Vibration analysis of GFRP composite box beam,' in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, 1996, 965-966.

CONNECTIONS AND JOINTS

1343. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1346. Mcgrath G.C., 'Aspects of joining pultrusions;' http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

1394. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

1415. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

1439. Rietz, A.,‘Failure of bolt connection in fiber reinforced plastic component exposed to bending torque,’ Engineering Failure Analysis, 84, 2018, 109-120.

1461. Shahverdi, M., Vassilopoulos, A.P. and Keller, T., ‘A total fatigue life model for the prediction of the R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints,’

1488. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMSB/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

1525. Turvey, G.J. and Cerutti, X., ‘Effects of splice joint geometry and bolt torque on the serviceability response of pultruded glass fibre reinforced polymer composite beams,’ Composite Structures, 131, 2015, 490-500. DOI: 10.1016/j.compstruct.2015.05.030

Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

Zhao, L., ‘Pultruded GFRP connections under elevated temperature Final year student thesis, Department of Civil Engineering, Monash University, Australia, 2013.

STRUCTURES AND BRIDGES

1. Composite structures subjected to high temperatures, in Proc. 17th Inter. Conf. on Composite Structures (ICCS17), Porto, 17-21 June, 2013. (Extended Abstract No. 3050)

1773. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1774. Keller, T., and Gurtler, H., 'In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders,' Composite Structures, 72 2, 2006, 151-162.

1939. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

2014. Tayeb, Baverel, Caron, and Du Pelouxin, ‘Gridshells in composite materials: construction of a 500 m² forum for the solidsays' festival in Paris,’ in Proc. 6th Int. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 11: Durability and Long-Term Performance, Paper 179, 2012, pp. 8. (no authors’ initials)

TXDOT conducted for the Texas Department of Transportation in cooperation with the U.S. Department of Transportation Federal Highway Administration, by the Center for Transportation Research Bureau of Engineering Research, The University of Texas at Austin, July 2002. http://fsel.engr.utexas.edu/publications/docs/1773-1.pdf

2072. Zhan, Y., Wu, G., Yang, M. and Yang, L.S., ‘Experimental study on fast repair of equal-angle steel lattice column with GFRP pultruded profiles,’ in Proc. 7th Inter. Conf. on Advances in Steel Structures, Nanjing, China, Apr 14-16, 2012.

2086. Zheng, Y. and Motttram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

2192. Russo, S., ‘Shear and local effects in all-FRP bolted built-up columns,’ Advances in Structural Engineering, 18 8, 2015, 1227-1240.

DESIGN MANUALS AND ASSOCIATED MATERIAL

2241. CTI. 'Fiberglass pultruded structural products for use in cooling towers - STD-137 (94),’ Cooling Technology Institute, Houston, Revised July 1994.
2242. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2244. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2247. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2251. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

2268. Lesko, J.J. and Cousins, T.E., ‘EXTREN DWB® design guide - 8”x6” EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,’ Strongwell Cop., 2003.

2280. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

DESIGN GUIDANCE, STANDARDS AND PATENTS

2302. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA)), American Society of Civil Engineers, 9 November 2010, p. 189. (not in public domain)

http://www.archbau.zhaw.ch/fileadmin/user_upload/architektur/dokumente/fvk/Lehre_und_Weiterbildung/2010_BUEV_Empfehlungen.PDF or

2307. ‘Structural design of FRP components,’ CTI Bulletine ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2336. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2347. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

2352. 'Standard practice for classifying reinforced plastic pultruded shapes according to composition,' D3647-09, ASTM, West Conshohocken, Pa, 2009.

2356. 'Specification for reinforced sucker rods,' API Spec 11C-88.

CONFERENCE PROC.

2379. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2405. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.

2413. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Biejing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghus University Press, 2010.

2417. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESES

https://smartech.gatech.edu/jspui/bitstream/1853/5138/1/elhajjar_rani_f_200405_phd.pdf

http://scholar.lib.vt.edu/theses/available/etd-12052003-154555/

2494. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2520. Liu, X., ‘A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,’ MS thesis, California State University, Fullerton, USA, 2000. 149 pages

2524. Marra, G., ‘A numerical and experimental analysis on the mechanical behaviour of bolted joints between pultruded profiles and T-stubs of glass fiber reinforced polymer,’ University of Salerno, Italy, PhD thesis, 2011. http://www.google.co.uk/url?q=https%3A%2F%2Fwww.google.co.uk%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26frm%3D1%26source%3Dweb%26cd%3D1%26ved%3D0CC8QFjAA&url=http%3A%2F%2Felea.unisa.it%2Fjspui%2Fbitstream%2F10556%2F351%2F1%2Ftesi%2520G.%2520Marra.pdf&ei=08AZUv6WJ4T60gX3t4DQ8g&usg=AFQjCNE0Ut6tktJYPkPv4ee8FabZYaL-Q&bvm=bv.51156542,d.d2k

2529. McMahon, A.R., 'Design, construction and testing of a glass reinforced plastic bonded truss frame,' Final Year Project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

2553. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

2561. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.

2581. Smith, K.A., ‘Compression creep of a pultruded E-glass/polyester composite at elevated service temperature,’ MSc Thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2586. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

https://escholarship.org/uc/item/3pm3652p

http://infoscience.epfl.ch/record/33721

WEB SITES
2618. Access Design and Engineering http://www.access-design.co.uk/
2619. Ahlstrom Corporation (Glassfibre) www.ahlstrom.com/
2620. American Composites Manufacturers Association (ACMA) www.cfa-hq.org
2621. Anglia Composites Ltd. www.angliacomposites.co.uk
2623. Bakaert Composites http://www.bekaert.com/
2624. The British Plastics Federation http://www.bpf.co.uk/
2625. Captrad, UK http://www.captrad.com/
2626. CTS Bridges, Huddersfield, UK http://www.ctsbridges.co.uk/ https://www.youtube.com/watch?v=CSn8_wNZLcg
2627. Comfort line (door and windows) http://www.comfortlineinc.com/
2628. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/
2629. Composite Cooling Solutions http://compositecooling.com/ (Cooling towers)
2630. Composites Technology http://www.compositesworld.com/ct/
2631. Composites UK (trade organization) https://compositesuk.co.uk/ Construction Sector Group
2632. Composites z http://www.compositez.com/
2634. Cooling Technology Institute, Houston http://www.cti.org/
2635. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/
2637. Deck Industry Association http://www.deckindustry.org/resources.htm
2640. DRB Industries http://www.drbcoolingtowers.com/pultruded_frp.php
2641. Dura Composites http://www.duracomposites.com/ high quality flooring and cladding
2642. EPI, fabricator (Texas, USA) http://engpro.com/
2644. EPTA (European Pultrusion Technology Association) http://pultruders.org/
2645. Exel Composites (UK) http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd.)
2646. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/
2647. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), (USA) http://www.fibergrate.com/
2648. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), (UK) http://www.fibergrate.co.uk/
2649. Fiberline Composites A/S (Denmark) http://www.fiberline.com/
2651. Fibrolux GMBH (Germany) http://fibrolux.com/
2652. Genesis Composites (UK) http://www.genesiscomposites.co.uk/
2654. GDP Koral, s.r.o. http://www.gdpkoral.cz
2655. IFE Pultrusion Exchange http://www.fiberglass.com/fiberglass/a/fg5005.html
2656. IIFC (Inter. Institute for FRP in Construction) http://www.iifc-hq.org/
2657. ISIS Canada http://www.isiscanada.com/
2661. Lee Composites, Inc. www.leeocomposites.com
2662. Liberty Pultrusions (West Mifflin, Pa.) http://www.libertypultrusions.com/
2663. Lionweld Kennedy, fabricator (UK) http://www.lk-uk.com/
2664. Martin Pultrusion Group http://www.martinpultrusion.com/
2665. NetComposites (UK) http://www.netcomposites.com
2667. Pipex px, fabricator (UK) https://www.pipexpx.com/
2668. Polymec, Madrid, Spain http://polymec.com/
2670. PPG Industries UK Ltd. http://ppg.com
2672. Pultrec (UK) http://www.pultec.com/
2673. Pultron Composites http://www.pultron.com/ (New Zealand)
2674. Pultrusion Industry Council (USA) http://www.pultrusionindustry.org/
2677. Röchling (Germany) http://www.roechling-haren.de/
2679. Seasafe (pultruder) http://www.seasafe.com/
2680. Strongwell http://www.strongwell.com
2681. SXP Cooling technologies http://spxcooling.com/
2682. Top Glass SpA http://www.topglass.it
2683. Tufnol (UK) http://www.tufnol.com/
2686. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/
2687. Yprado http://www.yprado.eu/ windows and doors
2688. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/