This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

**MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES**


6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.


17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.


87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.


http://www.tim-daly.co.uk/PolymerDownload1.pdf

http://www.tim-daly.co.uk/PolymerDownload3.pdf


109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??


112. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copehagen, 1996. ??

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.


133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.


151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.


207. Ryszard D.A., ‘Construction material for a bridge with regard to the environment,’ Bautechnik, 80 1, 2003, 32-42.


JOURNALS, NEWSLETTERS AND MAGAZINES


244. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

245. Composite Design and Applications - The Source for Solutions and Technology. USA.


247. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.


249. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION


255. Al-Assafi, S., 'Thermomechanical analysis of water aged pultruded composites,' in Proc. 4th Asian-Australian Conf. on Composite Materials (ACCM-4), Sydney, July 2004. ??


257. Al-Assafi, S., 'Analysis of aged vinyl polyester and polyester pultruded composite,' J. of Advanced Materials, 37, 2005, 70-75. ??


Bia, Y. is also Yu, B


http://doc.utwente.nl/92118/1/EPTA2014_Abstract_Ismet%20Baran.pdf


doi: 10.1177/0731684415587411

doi: 10.1016/j.compstruct.2013.09.057


321. Chu, W. and Karbhari, V.M. ‘Synergistic hygrothermal effects on durability of E-glass vinylester composites,’ in Proc. 6th Inter. Symp. on Fibre-Reinforced Polymer - Reinforcement for


400. Herbert, ‘The influence of the process parameters on the mechanical properties of pultruded GRP-profiles,’ European Owen-Corning Fiberglass, Battice, Belgium, 1989. ??


439. Lackey, E., 'Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,' Final Report ASTM D 5379-93 and ASTM D 6641-01, University of Mississippi, Oxford, MS, USA.


444. Li, C.G., Xian, G.J. and Li, H. ‘Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures,’ Polymer, 10 6, 2008, Article No. 627. doi: 10.3390/polym10060627


467. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.


477. Nguyen, T.T. Chan, T.M. and Mottram, J.T., ‘Reliable in-plane shear modulus for pultruded FRP shapes,’ Proceedings of the Institution of Civil Engineers - Structures and Buildings,


485. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

486. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA, St. Lois, MO, 2006. ??


496. Pour-Ghaz, M., Miller, B.L.H., Alla, O.K. and Rizkalla, S., ‘Do mechanical and environmental loading have a synergistic effect on the degradation of pultruded glass fiber reinforced polymers?’ Composites Part B-Engineering, 106, 2016, 344-355.


513. Runyan, M.C. and Jones, W.C., 'Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4 K,' Cryogenics, 48, 9-10, 2008, 448-454.

514. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ‘Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034


Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention
Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures
Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications


**STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING**


626. Kalamkarov, A.L., MacDonald, D.O., Fitzgerald, S.B. and Georgiades, A.V., ‘Performance of pultruded FRP reinforcements with embedded optic sensors,’ in Proc. 4th Inter. Conf. on
Durability Analysis of Composite Systems (DURACOSY99), Recent Developments in Durability Analysis of Composite Systems, 2000, Chapt. 60, 293-301.


ELEMENT BEHAVIOUR


870. Insausti, A., 'A design method for concentrically loaded FRP columns following the Eurocode,' in Proc. 8th Inter. Conf. on Composite Materials (Advancing with Composites 2005), AMME-ASMECCANICA, Università di Napoli, 2005, pg 1-7.


875. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??


907. Lane, A. and Mottram, J.T., ‘The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,’ in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.


Mottram, J.T., ‘Lateral-torsional buckling of thin-walled composite I-beams by the finite difference method, Composites Engrg., 2 2, 1992, 91-104.


960. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,


980. OToole, B.J. and Tong, Q., ‘Effect of lay-up, core material, and cross-sectional geometry on the structural performance of pultruded fiberglass utility poles,’ J. Reinforced Plastics and Composites, 15 7, 1996, 692-700.


989. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??


1037. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplIntJ.v8.i1.10


1048. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.


1054. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.


1076. Sirjani, M.B. and Razzaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.


1096. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.


1098. Thomsen, O.T, and Kratmann, K.K., ‘Experimental characterisation of parameters controlling the compressive failure of pultruded unidirectional carbon fibre composites,’ J. Applied


1109. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, Tucson, 1996. 651-664.


1145. Wong, P.M.H., Wang, Y.C. and Davies, J.M., ‘Behaviour of fibre reinforced plastic (GRP) columns at elevated temperatures,’ CIB-CTBUH Inter. Conf. on Tall Building, Malaysia, 2003. ??

1146. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.


1148. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,’ Composite Structures, 81 1, 2007, 84-95.


1163. Yuan, R.L. and Hashen, Z., 'The effect of end support conditions on the behavior of GFRP composite columns,' in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, 1996, 621-627.


1166. Yuan, R.L. and Seangatith, S., 'Vibration analysis of GFRP composite box beam,' in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, 1996, 965-966.


CONNECTIONS AND JOINTS


1332. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)


1335. McGrath G.C., 'Aspects of joining pultrusions,' http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05


1383. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.


1396. Oppe, M. and Knippers, K. ‘A consistent design concept for bolted connectionsin standardized GFRP-profiles,’ in Proc. 5th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2010), Vol.


1404. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.


1428. Rietz, A., ‘Failure of bolt connection in fiber reinforced plastic component exposed to bending torque,’ Engineering Failure Analysis, 84, 2018, 109-120.


1477. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.


ISSN 1090-0268 10.1061/(ASCE)CC.1943-5614.0000488?af=R&

1553. Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004


**STRUCTURES AND BRIDGES**


1616. Boscato, G., Casalegno, C., Mottram, J.T. and Russo, S., 'Time-dependent effects on critical buckling load of pultruded column,' Session 7: Composite structures in civil engineering, in Proc. 17th Inter. Conf. on Composite Structures (ICCS17), Porto, June 17-21, 2013. (Extended Abstract No. 3053)


1688. Evernden M.C. and Mottram J.T., ‘Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,’ Advances in Structural Engineering, 14 6, 2011, 991-1004.


1761. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1762. Keller, T., and Gurtler, H., 'In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders,' Composite Structures, 72 2, 2006, 151-162.


1926. Russo, S., Boscato, G. and Motttram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom).


2070. Zheng, Y. and Mottram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.


OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)


2106. Connolly, M., King, J. Shidaker, T. and Duncan, A., ‘Characterization of pultruded polyurethane composites: Environment exposure and component assembly testing,’ Composites 2006,
Covention and Trade Show, American Composites Manufacturers Association (ACMA), Oct. 18-20, St, Louis, MO.


2177. Russo, S., ‘Shear and local effects in all-FRP bolted built-up columns,’ Advances in Structural Engineering, 18 8, 2015, 1227-1240.


2187. Turvey, G.J. and Slater, R.C., ‘Tests on pultruded GRP posts for handrail/barrier structures,’ in Proc. 1st Advanced Composite Materials in Bridges and Structures (ACMB/1), Canada Society for Civil Engineers (CSCE), 1992, 319-329.


DESIGN MANUALS AND ASSOCIATED MATERIAL


2227. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2229. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.


2232. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.


2236. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.


2253. Lesko, J.J. and Cousins, T.E., ‘EXTREN DWB® design guide - 8"x6" EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,’ Strongwell Cop., 2003.


2265. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.


2283. 'Recommended practice for fibre-reinforced polymer products for overhead utility line structures,' ASCE manuals and reports on engineering practice No. 104, ASCE Reston, 2002.
DESIGN GUIDANCE, STANDARDS AND PATENTS


2287. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA), American Society of Civil Engineers, 9 November 2010, p. 189. (not in public domain)


2292. ‘Structural design of FRP components,’ CTI Bulletine ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.


2321. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.


2332. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.


2335. ‘Standard test method for determining the compressive properties of polymer matrix composite laminates using a combined loading compression (CLC) test fixture,’ D6641 / D6641M-09, ASTM, West Conshohocken, Pa, 2009


2337. 'Standard practice for classifying reinforced plastic pultruded shapes according to composition,' D3647-09, ASTM, West Conshohocken, Pa, 2009.


**CONFERENCE PROC.**


2364. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.


2390. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.


2396. Brisk Events (Ed.), 2nd World Pultrusion Conf. in Baltimore, 21-22 May, 2009, USA.


2398. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Bieijing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghaus University Press, 2010.


2402. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.


THESES


2471. Hayes, M.D., ‘Structural analysis of a pultruded composite beam: Shear stiffness
determination and strength and fatigue life predictions,’ PhD Thesis, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, 2003.
http://scholar.lib.vt.edu/theses/available/etd-12052003-154555/


2473. Holden, G.J., ‘Static indentation and impact behaviour of glass reinforced plastic pultruded

2474. Honickman, H., ‘Pultruded GFRP sections as stay-in-place structural open formwork for
concrete slabs and girders,’ MSc thesis. Department of Civil Engineering. Queen's University;

2475. Howard, I., ‘Development of light weight FRP bridge deck designs and evaluations,’ Masters
Thesis, College of Engineering and Mineral Resources, West Virginia University, Morgantown,
West Virginia, USA, 2002.

2476. Hulland, M., ‘Pultruded GFRP beams: An evaluation of the expanded web beam concept,’ PhD

2477. Humphreys, M.F., ‘Development and structural investigation of monocoque fibre composite

2478. Insausti, A., ‘Global stability of glass fibre reinforced polymeric structural elements,’ PhD
Thesis, University of Navarra, Spain, 2007. (In Spanish)
http://www.tecnun.es/english/thesis/mechanics/the68.htm

2479. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated
service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology,
2005.

2480. Jahic, J., ‘Mechanical behavior of pultruded composite materials under elevated temperature
conditions,’ MS thesis, California State University, Fullerton, 2000.


2482. Jelf, P.M., ‘Compressive failure of aligned fibre composites,’ PhD. Thesis, University of Cambridge,
UK, 1993. 43-2250

2483. Jennifer, R., ‘Development of an innovative connection for FRP bridge decks to steel girders,
MS thesis, West Virginia University, USA, 2002.

2484. Jessen, S.M., ‘Fatigue damage accumulation and life prediction in pultruded glass/polyester

2485. Jinka, C.S., ‘Dynamic response evaluation of fiber reinforced composite bridge deck and
bridges,’ Master’s Thesis, West Virginal University, USA, 2003.
http://wvuscholar.wvu.edu:8881/R/?func=dbin-jump-full&object_id=6827


2505. Liu, X., ‘A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,’ MS thesis, California State University, Fullerton, USA, 2000. 149 pages


2514. McMahon, A.R., ‘Design, construction and testing of a glass reinforced plastic bonded truss frame,’ Final Year Project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.


2538. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages


2546. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.


2557. Scott, D., 'Short and long-term behavior of axially compressed slender doubly symmetric fiber-

2558. Seangatith, S., 'Characterization and analysis of composite beams subjected to impact loads,' 

2559. Sebastian, W.M., 'The performance of a composite space truss bridge with glass reinforced 

2560. Senne, J. 'Fatigue life of hybrid FRP composite beams,' MS Thesis, Virginia Polytechnic Institute 
and State University, Virginia 2000. (online at: http://scholar.lib.vt.edu/theses/index.html)

2561. Shan, L., 'Explicit buckling analysis of fiber-reinforced plastic (FRP) composite structures,' PhD 
http://www.cmec.wsu.edu/publications/Tshan.pdf

2562. Shanmugam, J., 'Moment capacity and deflection behaviour of pultruded FRP composite sheet 

2563. Shahverdi, M., 'Mixed-mode static and fatigue failure criteria for adhesively-bonded FRP 

2564. Smith J.G., 'Compression creep of a pultruded E-glass/polyester composite at elevated service 
temperature,' MS Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, August 

2565. Smith, J.R., 'Parametric study of the behavior of composite box beams subjected to impact 
using LS-DYNA,' MS (Engineering Mechanics Program), University of Wisconsin-Madison, USA, 

2566. Smith, S.J., 'An investigation of beam-to-column connections for composite structural 


2568. Sotiropoulos, S.N., 'Static response of bridge superstructures made of fiber reinforced 

2569. Sotiropoulos, S.N., 'Performance of FRP components and connections for bridge deck 
systems,' PhD thesis, Dept. of Civil and Environmental Engineering, West Virginia Univ., 

2570. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in 
Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

2571. Springolo, M., New fibre-reinforced polymer box beam: Investigation of static behaviour, PhD 


WEB SITES

2602. Access Design and Engineering [http://www.access-design.co.uk/]

2603. Ahlstrom Coporation (Glassfibre) [www.ahlstrom.com/]

2604. American Composites Manufacturers Association (ACMA) [www.cfa-hq.org]

2605. Anglia Composites Ltd. [www.angliacomposites.co.uk]


2607. Bekaert Composites [http://www.bekaert.com/]

2608. The British Plastics Federation [http://www.bpf.co.uk/]

2609. Captrad, UK [http://www.captrad.com/]

2610. CTS Bridges, Huddersfield, UK [http://www.ctsbridges.co.uk/]
      [https://www.youtube.com/watch?v=CSn8_wNZLcg]

2611. Comfort line (door and windows) [http://www.comfortlineinc.com/]

2612. Composite Construction Laboratory (CCLAB) [http://www.cclab.ch/]

2613. Composite Cooling Solutions [http://compositecooling.com/] (Cooling towers)

2614. Composites Technology [http://www.compositesworld.com/ct/]

2615. Composites UK (trade organization) [https://compositesuk.co.uk/] Construction Sector Group

2616. Composites z [http://www.compositez.com/]

2617. Cook Composites & Polymers, Inc. [http://www.ccponline.com/]

2618. Cooling Technology Institute, Houston [http://www.cti.org/]

2619. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) [http://www.cosacnet.soton.ac.uk/]

2620. Creative Pultrusions, Inc. [http://www.pultrude.com/]

2621. Deck Industry Association [http://www.deckindustry.org/resources.htm]


2623. Dow Deutschland Inc. [http://www.dow.com]


2625. Dura Composites [http://www.duracomposites.com/] high quality flooring and cladding
2626. EPI, fabricator (Texas, USA) http://engpro.com/


2628. EPTA (European Pultrusion Technology Association) http://pultruders.org/

2629. Exel Composites (UK) http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd.)

2630. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2631. Fibergate Composite Structures (Fiberglass Gratings and Structural Systems), (USA) http://www.fibergate.com/

2632. Fibergate (Fiberglass Gratings and Fiberglass reinforced plastic products), (UK) http://www.fibergate.co.uk/

2633. Fiberline Composites A/S (Denmark) http://www.fiberline.com/


2635. Fibrolux GMBH (Germany) http://fibrolux.com/

2636. Genesis Composites (UK) http://www.genesiscomposites.co.uk/


2638. GDP Koral, s.r.o. http://www.gdpkoral.cz

2639. IFE Pultrusion Exchange http://www.fiberglass.com/fiberglass/a/fg5005.html

2640. IIFC (Inter. Institute for FRP in Construction) http://www.iifc-hq.org/

2641. ISIS Canada http://www.isiscanada.com/


2645. Lee Composites, Inc. www.leeocomposites.com

2646. Liberty Pultrusions (West Mifflin, Pa.) http://www.libertypultrusions.com/

2647. Lionweld Kennedy, fabricator (UK) http://www.lk-uk.com/

2648. Martin Pultrusion Group http://www.martinpultrusion.com/

2649. NetComposites (UK) http://www.netcomposites.com
2651. Pipex px, fabricator (UK)  https://www.pipepx.com/
2652. Polymec, Madrid, Spain  http://polymec.com/
2654. PPG Industries UK Ltd.  http://ppg.com
2656. Pultrec (UK)  http://www.pultec.com/
2657. Pultron Composites  http://www.pultron.com/ (New Zealand)
2658. Pultrusion Industry Council (USA)  http://www.pultrusionindustry.org/
2661. Röchling (Germany)  http://www.roechling-haren.de/
2663. Seasafe (pultruder)  http://www.seasafe.com/
2664. Strongwell  http://www.strongwell.com
2665. SXP Cooling technologies  http://spxcooling.com/
2666. Top Glass SpA  http://www.topglass.it
2667. Tufnol (UK)  http://www.tufnol.com/
2670. West Virginia University – Constructed Facilities Center  http://www.cemer.wvu.edu/cfc/
2671. Yprado  http://www.yprado.eu/ windows and doors
2672. ZellComp, Inc. prefabricated High-Load Structural Decking System  http://www.zellcomp.com/

J. T. Mottram  ©