This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES


6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.


17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.


67. Busel, J., 'State of the North American pultrusion industry – An examination of the the pultrusion industry, plus update on the LRFD design standard,' Composite Manufacturing, April, 2008, 28-54. (not every page)


77. Daniel R.A. Nagtegaal G., 'Pedestrian bridge of pultruded sections as result of ecological design,' in Proc. EPTA Seminar, EPTA, 2001, p ?.


88. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.


102. Goldworthy W.B., ‘Composites just another building material - Only better,’ in Proc. 40th Inter. SAMPE Symposium and Exhibition, Anaheim Convention Center, SAMPE, 40, 1, 1995, 504-512.


111. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??


114. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copehagen, 1996. ??

115. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.


135. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Int. SAMPE Symposium, SAMPE, 1992, ??.


140. Keller, T., ‘New bridges and buildings constructed from translucent GFRP sandwich panels and glued GFRP elements,’ in Proc. 3rd Int. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers, 2000, 785-792.


151. Knudsen, E., 'Development of a high performance composite bridge decking system,' in Proc. Composites in Piping and Infrastructure, University of Newcastle upon Tyne, 10-11 April 2001. (talk ?)


153. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.


210. Ryszard D.A., ‘Construction material for a bridge with regard to the environment,’ Bautechnik, 80 1, 2003, 32-42.


JOURNALS, NEWSLETTERS AND MAGAZINES


248. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

249. Composite Design and Applications - The Source for Solutions and Technology. USA.


251. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.


253. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION


259. Al-Assafi, S., 'Thermomechanical analysis of water aged pultruded composites,' in Proc. 4th Asian-Australian Conf. on Composite Materials (ACCM-4), Sydney, July 2004. ??


261. Al-Assafi, S., 'Analysis of aged vinylester and polyester pultruded composites,' J. of Advanced Materials, 37 4, 2005, 70-75. ??


doi: 10.1016/j.compstruct.2013.09.057


404. Haramis, J., Verghese, K.N.E., Lesko, J.J. and Weyes, R.E., ‘Characterization of freeze-thaw damage mechanisms in composites for civil infrastructure,’ in Proc. 3rd Inter. Conf. on


408. Helbling, C. and Karbhari, V.M., ‘Durability assessment of combined environmental exposure and bending, in Proc. 7th Inter. Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, SP-230-79, 2005, 1397-


449. Lackey, E., ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTM D 6640-01, University of Mississippi, Oxford, MS, USA.


454. Li, C.G., Xian, G.J. and Li, H. ‘Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures,’ Polymer, 10 6, 2008, Article No. 627. doi: 10.3390/polym10060627


481. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.


501. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

502. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA, St. Lois, MO, 2006. ??


530. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ‘Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034


Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention

Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications

Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures

Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications


**STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING**


**ELEMENT BEHAVIOUR**


Aghaei, M., Forouzan, M.R., and Ahmadi, E., ‘Predicting the buckling behavior of pultruded beams under axial static compression,’ Iranian J. of Science and Technology of Science and technology of mechanical Engineering, 40 2, 2016, 125-129. DOI: 10.1007/s40997-016-0001-0


888. Hollaway, L and Lee, J., 'Discussion of the paper 'Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding' Composite Structures, 28 1, 1994, 121


895. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??


927. Lane, A. and Mottram, J.T., 'The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,’ in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.


981. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,


1010. Park, J. Y. and Lee, J. W., 'Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,' in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??


1058. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplIntJ.v8.i1.10


1069. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.


1075. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.


1098. Sirjani, M.B. and Razzaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.


1118. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.


1131. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, Tucson, 1996. 651-664.


1169. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.


1171. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,' Composite Structures, 81 1, 2007, 84-95.


CONNECTIONS AND JOINTS


1362. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)


1365. Mcgrath G.C., ‘Aspects of joining pultrusions,’ http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05


1413. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.


1434. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.


1460. Rietz, A., ‘Failure of bolt connection in fiber reinforced plastic component exposed to bending torque,’ Engineering Failure Analysis, 84, 2018, 109-120.


1509. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.


1524. Turvey, G.J. and Wang P., ‘A critique of the EUROCOMP simplified design method for bolted joints in long fibre reinforced polymer composite materials,’ in Proc. 1st Inter. Conf. on


1585. Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004


**STRUCTURES AND BRIDGES**


1650. Boscatto, G., Casalegno, C., Mottram, J.T. and Russo, S., ‘Time-dependent effects on critical buckling load of pultruded column,’ Session 7: Composite structures in civil engineering, in Proc. 17th Int. Conf. on Composite Structures (ICCS17), Porto, June 17-21, 2013. (Extended Abstract No. 3053)


1723. Evernden M.C. and Mottram J.T., ‘Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,’ Advances in Structural Engineering, 14 6, 2011, 991-1004.


1797. Keller, T., and Schollmayer, M., ‘In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,’ Composite Structures, 72 1, 2006, 130-140.

1798. Keller, T., and Gurtler, H., 'In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders,' Composite Structures, 72 2, 2006, 151-162.


1965. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)


2040. Tayeb, Baverel, Caron, and Du Pelouxin, ‘Gridshells in composite materials: construction of a 500 m² forum for the solidays' festival in Paris,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 11: Durability and Long-Term Performance, Paper 179, 2012, pp. 8. (no authors’ initials)


2099. Zhan, Y., Wu, G., Yang, M. and Yang, L.S., ‘Experimental study on fast repair of equal-angle steel lattice column with GFRP pultruded profiles,’ in Proc. 7th Inter. Conf. on Advances in Steel Structures, Nanjing, China, Apr 14-16, 2012.


2113. Zheng, Y. and Motttram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSE), 1996, 919-927.


**OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)**


158


2210. Okeil, A.M., ‘Characterization of mechanical properties of composite materials for infrastructure projects,’ Final report on Project # 13-02 to United States Department of Transportation, Gulf Coast Research Center for Evacuation and Transportation Resiliency, LSU


2220. Russo, S., ‘Shear and local effects in all-FRP bolted built-up columns,’ Advances in Structural Engineering, 18 8, 2015, 1227-1240.


2230. Turvey, G.J. and Slater, R.C., ‘Tests on pultruded GRP posts for handrail/barrier structures,’ in Proc. 1st Advanced Composite Materials in Bridges and Structures (ACMB/1), Canada Society for Civil Engineers (CSCE), 1992, 319-329.


**DESIGN MANUALS AND ASSOCIATED MATERIAL**


2242. Anon., ‘EXTREN design manual.’ Morrison Molded Fiber Glass Co., Bristol, Va, 1989. Addendum 1990, 1995. (Strongwell from 1 July 1997) [http://www.strongwell.com/member-options/?_s2member_vars=post..level..0..post..134..L3Rvb2xzL2Rlc2lnbi1tYW51YWwv&_s2member_sig=1477162888-8b4100ac50f697a87fb6ef5f9a6ecb70](http://www.strongwell.com/member-options/?_s2member_vars=post..level..0..post..134..L3Rvb2xzL2Rlc2lnbi1tYW51YWwv&_s2member_sig=1477162888-8b4100ac50f697a87fb6ef5f9a6ecb70)


2270. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.


2272. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.


2275. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.


2279. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.
168


2296. Lesko, J.J. and Cousins, T.E., 'EXTREN DWB® design guide - 8”x6” EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,' Strongwell Cop., 2003.


2308. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials,' in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.


2312. Restrepo, E.S., ‘Determination of AASHTO bridge design parameters through field evaluation of the Rt. 601 bridge: A bridge utilizing Strongwell 36 in. fiber-reinforced polymer double web beam as the main load carrying member,’ Civil and Environmental Engineering. Blacksburg, Virginia Polytechnic Institute and State University, 2002, p. 164.


2326. 'Recommended practice for fibre-reinforced polymer products for overhead utility line structures,' ASCE manuals and reports on engineering practice No. 104, ASCE Reston, 2002.

**DESIGN GUIDANCE, STANDARDS AND PATENTS**


2330. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA)), American Society of Civil Engineers, 9 November 2010, p. 189. (not in public domain)


2335. ‘Structural design of FRP components,’ CTI Bulletin ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.


2359. ‘Standard test method for in-plane shear properties of composite laminates,’ D4255 / D4255M - 01(2007), ASTM, West Conshohocken, Pa, 2007. There is a Adjunct to this standard.


2364. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.


2375. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.


2380. 'Standard practice for classifying reinforced plastic pultruded shapes according to composition,' D3647-09, ASTM, West Conshohocken, Pa, 2009.


CONFERENCE PROC.

2403. EPTA (Ed.), 'Composites at sea,' Symposium 13-14 March 1990, European Pultrusion Technology Association, The Netherlands. 12 papers


2407. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.


2433. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.


2439. Brisk Events (Ed.), 2nd World Pultrusion Conf. in Baltimore, 21-22 May, 2009, USA.


2441. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Biejing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghush University Press, 2010.


2445. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.


THESSES


2480. Coleman, J. T., 'Continuation of field and laboratory tests of a proposed bridge deck panel fabricated from pultruded fiber-reinforced polymer components,' MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2002.


http://scholar.lib.vt.edu/theses/available/etd-12052003-154555/


http://www.tecnun.es/english/thesis/mechanics/the68.htm


2548. Liu, X., 'A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,' MS thesis, California State University, Fullerton, USA, 2000. 149 pages


2557. McMahon, A.R., 'Design, construction and testing of a glass reinforced plastic bonded truss frame,' Final Year Project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.


2582. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages


2590. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.


2610. Smith, K.A., ‘Compression creep of a pultruded E-glass/polyester composite at elevated service temperature,’ MSc Thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.


2615. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.


**WEB SITES**

2647. Access Design and Engineering [http://www.access-design.co.uk/](http://www.access-design.co.uk/)

2648. Ahlstrom Corporation (Glassfibre) [www.ahlstrom.com/](http://www.ahlstrom.com/)

2649. American Composites Manufacturers Association (ACMA) [www.cfa-hq.org](http://www.cfa-hq.org)

2650. Anglia Composites Ltd. [www.angliacomposites.co.uk](http://www.angliacomposites.co.uk)


2653. The British Plastics Federation [http://www.bpf.co.uk/](http://www.bpf.co.uk/)


2655. CTS Bridges, Huddersfield, UK [http://www.ctsbridges.co.uk/](http://www.ctsbridges.co.uk/)
2656. Comfort line (door and windows) http://www.comfortlineinc.com/

2657. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/

2658. Composite Cooling Solutions http://compositecooling.com/ (Cooling towers)


2660. Composites UK (trade organization) https://compositesuk.co.uk/ Construction Sector Group

2661. Composites z http://www.compositez.com/


2663. Cooling Technology Institute, Houston http://www.cti.org/

2664. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/


2666. Deck Industry Association http://www.deckindustry.org/resources.htm


2670. Dura Composites http://www.duracomposites.com/ high quality flooring and cladding

2671. EPI, fabricator (Texas, USA) http://engpro.com/


2673. EPTA (European Pultrusion Technology Association) http://pultruders.org/

2674. Exel Composites (UK) http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd.)

2675. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2676. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), (USA) http://www.fibergrate.com/

2677. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), (UK) http://www.fibergrate.co.uk/

2678. Fiberline Composites A/S (Denmark) http://www.fiberline.com/
2679. Fiber Profil S. L. (Spain) [http://fiberprofil.com/en/]
2680. Fibrolux GMBH (Germany) [http://fibrolux.com/]
2681. Genesis Composites (UK) [http://www.genesiscomposites.co.uk/]
2683. GDP Koral, s.r.o. [http://www.gdpkoral.cz]
2684. IFE Pultrusion Exchange [http://www.fiberglass.com/fiberglass/a/fg5005.html]
2685. IIFC (Inter. Institute for FRP in Construction) [http://www.iifc-hq.org/]
2686. ISIS Canada [http://www.isiscanada.com/]
2687. James Quinn Associates Ltd. [http://www.jqal.co.uk/]
2688. Kemrock Industries & Exports Ltd. [http://www.kemrock.com/] (India)
2689. KaZaK Composites, Inc. [http://kazakcomposites.com/]
2690. Lee Composites, Inc. [www.leeecomposites.com]
2691. Liberty Pultrusions (West Mifflin, Pa.) [http://www.libertypultrusions.com/]
2692. Lionweld Kennedy, fabricator (UK) [http://www.lk-uk.com/]
2693. Martin Pultrusion Group [http://www.martinpultrusion.com/]
2694. NetComposites (UK) [http://www.netcomposites.com]
2695. Owens Corning Inc. [http://www.owenscorning.com]
2696. Pipex px, fabricator (UK) [https://www.pipexpx.com/]
2697. Polymec, Madrid, Spain [http://polymec.com/]
2698. Powertrusion Dynamics Inc. [http://www.powertrusion.com]
2699. PPG Industries UK Ltd. [http://ppg.com]
2700. Pultrall (Canadian pultruder) [http://www.pultrall.com/Site2008/index.htm]
2701. Pultrec (UK) [http://www.pultec.com/]
2702. Pultron Composites [http://www.pultron.com/] (New Zealand)
2703. Pultrusion Industry Council (USA) [http://www.pultrusionindustry.org/]
2704. Psychrometric Systems Inc. [http://www.pscoolingtowers.com/] FRP cooling towers

2706. Röchling (Germany)  http://www.roechling-haren.de/


2708. Seasafe (pultruder)  http://www.seasafe.com/

2709. Strongwell  http://www.strongwell.com

2710. SXP Cooling technologies  http://spxcooling.com/

2711. Top Glass SpA  http://www.topglass.it

2712. Tufnol (UK)  http://www.tufnol.com/


2715. West Virginia University – Constructed Facilities Center  http://www.cemr.wvu.edu/cfc/

2716. Yprado  http://www.yprado.eu/  windows and doors

2717. ZellComp, Inc. prefabricated High-Load Structural Decking System  http://www.zellcomp.com/

J. T. Mottram  ©