Reference and Bibliography Database on
Research and Development with
Pultruded Fibre Reinforced Polymer Shapes and Systems

Compiler: Professor J. Toby Mottram email: J.T.Mottram@warwick.ac.uk
Address: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.

?? - Incomplete details bold font – to be published

Date: 01/10/19 Pages: 193 Entries: 2678

This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,' Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,' Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

36. Anon. ‘University of Valencia EDEM Business School refurbished with an all composite cladding system,’ 2016. [webpage]

66. Busel, J., ‘State of the North American pultrusion industry – An examination of the the pultrusion industry, plus update on the LRFD design standard,’ Composite Manufacturing, April, 2008, 28-54. (not every page)

76. Daniel R.A. Nagtegaal G., ‘Pedestrian bridge of pultruded sections as result of ecological design,’ in Proc. EPTA Seminar, EPTA, 2001, p ?.

87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

http://www.tim-daly.co.uk/PolymerDownload1.pdf

http://www.tim-daly.co.uk/PolymerDownload3.pdf

109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

112. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copehagen, 1996. ??

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

206. Russo, S., 'Case study: Seismic design and construction of large pultruded FRP structure,' IIFC newsletter, FRP Inter., Vol. 8 No. 2, 2011.

207. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

211. Shanmuganathn, S., 'Fibre reinforced polymer composite materials for civil and building structures - review of the state-of-the-art,' The Structural Engineer, 81 13, 2003, 26-33.

JOURNALS, NEWSLETTERS AND MAGAZINES

244. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

245. Composite Design and Applications - The Source for Solutions and Technology. USA.

247. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

249. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

321. Chu, W. and Karbhari, V.M. ‘Synergistic hygrothermal effects on durability of E-glass vinylester composites,’ in Proc. 6th Inter. Symp. on Fibre-Reinforced Polymer - Reinforcement for

400. Herbert, ‘The influence of the process parameters on the mechanical properties of pultruded GRP-profiles,’ European Owen-Corning Fiberglass, Battice, Belgium, 1989. ??

Karbhari, V.M. and Xian, G., Hydrothermal effects on high Vf pultruded unidirectional carbon/epoxy composites: Moisture uptake, Composites Part B: Engineering, 40 1, 2009, 41–49

439. Lackey, E, ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTM D 6641-01, University of Mississippi, Oxford, MS, USA.

444. Li, C.G., Xian, G.J. and Li, H. ‘Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures,’ Polymer, 10 6, 2008, Article No. 627. doi: 10.3390/polym10060627

468. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

487. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

488. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA, St. Lois, MO, 2006. ??

516. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ‘Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention
Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures
Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

586. Xin, H., Liu, Y., Mosallam, A., Zhang, Y. and Wang, C., ‘Hygrothermal aging effects on flexural behavior of pultruded glass fiber reinforced polymer laminates in bridge applications,’

STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING

ELEMENT BEHAVIOUR

779. Cintra, G.G., Cardoso, D.C.T. and Vieira, J. D., ‘A discussion on the local buckling of pultruded GFRP I-Section columns,’ in Proc. 8th Inter. Conference on Advanced Composites in

870. Hollaway, L and Lee, J., 'Discussion of the paper 'Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding' Composite Structures, 28 1, 1994, 121

872. Insausti, A., 'A design method for concentrically loaded FRP columns following the Eurocode,' in Proc. 8th Inter. Conf. on Composite Materials (Advancing with Composites 2005), AMME-ASMECCANICA, Università di Napoli, 2005, pg 1-7.

877. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

909. Lane, A. and Mottram, J.T., 'The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,' in Proc. 3rd Int. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.

911. Laudiero, F., Minghini, F., Ponara, N. and Tullini, N., 'Buckling resistance of pultruded FRP profiles under pure compression or uniform bending-numerical simulation,' in Proc. 6th Int. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 085, 2012, pp. 8.

931. Mancusi, G., Ascione, F. and Lamberti, M., ‘Pre-buckling behavior of composite beams: A mechanical innovative approach,’ Composite Structures,
doi: http://dx.doi.org/10.1016/j.compstruct.2014.06.041

962. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,

991. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??

1009. Qiao, P., Zou, G. and Davalos, J.F., ‘Experimental and analytical evaluation of lateral buckling of FRP composite cantilever I-beams’ in Proc. 3rd Int. Conf. on Composites in Infrastructure (ICCI’02), Omipress (CD-ROM), 2002, Paper 017, p. 11.

1039. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplIntJ.v8.i1.10

https://www.researchgate.net/publication/306175467_Analise_de_estabilidade_de_vigas_pultrudidas_de_GFRP_solucoes_analiticas_para_a_encurvadura_lateral

1050. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.

1056. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

1060. Seangatith, S., 'GFRP box columns with different supports subjected to axial compression,' in Proc. 9th National Convention on Civil Engineering, Phetchaburi, Thailand, May 19-21, 2004. ?

1070. Shao, Y.X. and Shanmugam, J., 'Moment capacities and deflection limits of PFRP sheet piles,' J. Composites for Construction, 10 6, 2006, 520-528.

1079. Sirjani, M.B. and Razaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1099. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.

1112. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, Tucson, 1996. 651-664.

1149. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.

1151. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,' Composite Structures, 81 1, 2007, 84-95.

CONNECTIONS AND JOINTS

92

1303. Keller, T., De Castro, J. and Zhou, A., System ductility and redundancy of FRP structures with flexible adhesive joints,’ Proc. 4th Inter. Conf. of Advanced Composite Materials in Bridges and

1328. Luo, F., Yang, X. and Bai, Y., ‘Member capacity of pultruded GFRP tubular profile with bolted sleeve joints for assembly of lattice structures,’ J. Composite construction, 2015, 10.1061/(ASCE)CC.1943-5614.0000643, 04015080.

1335. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1338. McGrath G.C., ‘Aspects of joining pultrusions,’ http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

1386. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

1407. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

Rietz, A., ‘Failure of bolt connection in fiber reinforced plastic component exposed to bending torque,’ Engineering Failure Analysis, 84, 2018, 109-120.

1433. Robinson, A., ‘A study into the behaviour of FRP bolted connections,’ An Engineering Research Project Final Report (ENG4111 and ENG4112) towards the degree of Bachelor of Civil Engineering, University of Southern Queensland, Faculty of Engineering and Surveying, October 2015. [https://eprints.usq.edu.au/29167/1/Robinson_A_Banerjee.pdf]

1480. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMB/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

1517. Turvey, G.J. and Cerutti, X., ‘Effects of splice joint geometry and bolt torque on the serviceability response of pultruded glass fibre reinforced polymer composite beams,’ Composite Structures, 131, 2015, 490-500. DOI: 10.1016/j.compstruct.2015.05.030

1556. Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

STRUCTURES AND BRIDGES

1646. Canning, L., ‘Developments in FRP railway bridge applications,’ in Proc. 6th Int. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 749, 2012, pp. 10.

1647. Canning, L., ‘performance and 8-year load test on West Mill FRP bridge,’ in Proc. 6th Int. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 750, 2012, pp. 9.

1691. Evernden M.C. and Mottram J.T., 'Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,' Advances in Structural Engineering, 14 6, 2011, 991-1004.

Bridges and Structures (ACMBS-2), The Canadian Society for Civil Engineers (CSCE), 1996, 975-982.

1765. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1766. Keller, T., and Gurtler, H., 'In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders,' Composite Structures, 72 2, 2006, 151-162.

1783. Kim, S.H., Yoon, S.-J. and Choi, W., ‘Design and construction of 1 MW class floating PV generation structural system using FRP members, Energies, 10 8, 2017, Article No.: 1142.

1931. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

1991. Stankiewicz, B., Mossety-Leszczak, B., Byczynski, L. and Kisiel, M., ‘Synergistic effect on the degradation rate of pultruded glass fiber-reinforced polymer bridge panel after 20 years of

2006. Tayeb, Baverel, Caron, and Du Pelouxin, ‘Gridshells in composite materials: construction of a 500 m² forum for the solidays' festival in Paris,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 11: Durability and Long-Term Performance, Paper 179, 2012, pp. 8. (no authors' initials)

2064. Zhan, Y., Wu, G., Yang, M. and Yang, L.S., ‘Experimental study on fast repair of equal-angle steel lattice column with GFRP pultruded profiles,’ in Proc. 7th Inter. Conf. on Advances in Steel Structures, Nanjing, China, Apr 14-16, 2012.

2077. Zheng, Y. and Mottram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

2183. Russo, S., ‘Shear and local effects in all-FRP bolted built-up columns,’ Advances in Structural Engineering, 18 8, 2015, 1227-1240.

2193. Turvey, G.J. and Slater, R.C., ‘Tests on pultruded GRP posts for handrail/barrier structures,’ in Proc. 1st Advanced Composite Materials in Bridges and Structures (ACMB/1), Canada Society for Civil Engineers (CSCE), 1992, 319-329.

2194. Turvey, G.J. and Mulcahy, N., 'Free vibration of clamped pultruded GRP circular plates with central circular cut-outs,' in Proc. 4th Inter. Conf. on Thin-Walled Structures (ICTWS 2004), 2004, 927-934.

DESIGN MANUALS AND ASSOCIATED MATERIAL

2233. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2235. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2238. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2242. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

2259. Lesko, J.J. and Cousins, T.E., 'EXTREN DWB® design guide - 8”x6” EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,' Strongwell Cop., 2003.

2271. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

2283. Zureick, A. and Bennett, R., ‘Determination of material property characteristic values of fiber-reinforced polymeric composites,’ Structural Engineering, Mechanics and Materials Research

DESIGN GUIDANCE, STANDARDS AND PATENTS

2293. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA), American Society of Civil Engineers, 9 November 2010, p. 189. (not in public domain)

http://www.archbau.zhaw.ch/fileadmin/user_upload/architektur/dokumente/fvk/Lehre_und_Weiterbildung/2010_BUEV_Empfehlungen.PDF or

2298. ‘Structural design of FRP components,’ CTI Bulletine ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2327. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2338. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

CONFERENCE PROC.

2370. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2402. Brisk Events (Ed.), 2nd World Pultrusion Conf. in Baltimore, 21-22 May, 2009, USA.

2404. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Biejing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghus University Press, 2010.

2408. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESES

http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1964&context=etd

file:///C:/Users/esrgb/Downloads/Daniel_Carlos_Taissum_Cardoso_doutorado.pdf

http://repository.tudelft.nl/view/ir/uuid%3A6dd0caaf0-3128-4200-93a5-104ebbbc135f/

2485. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2511. Liu, X., ‘A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,’ MS thesis, California State University, Fullerton, USA, 2000. 149 pages

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Felea.unisa.it%2Fjspui%2Fbitstream%2F10556%2F351%2F1%2Ftesi%2520G.%2520Marra.pdf&ei=o8AZUv6WJ4T60gX3t4DQ8g&usg=AFQjCN0UtntkYYkPVpv4e8FabZYwL-Q&bvm=bv.51156542,d.d2k

2520. McMahon, A.R., ‘Design, construction and testing of a glass reinforced plastic bonded truss frame,’ Final Year Project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CEEQFjAA&url=http%3A%2F%2Fannali.unife.it%2Ffisic%2Farticle%2Fdownload%2F341%2F294&ei=sMMZUrn1FIb0QWbrdGwBWw&usg=AFQjCNF7SYo8-04h1pxEoUs3g325Rtg4Bg&bvm=bv.51156524,d.d2k

Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.

2576. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

WEB SITES

2608. Access Design and Engineering http://www.access-design.co.uk/

2609. Ahlstrom Coporation (Glassfibre) www.ahlstrom.com/

2610. American Composites Manufacturers Association (ACMA) www.cfa-hq.org

2611. Anglia Composites Ltd. www.angliacomposites.co.uk

2614. The British Plastics Federation http://www.bpf.co.uk/

2616. CTS Bridges, Huddersfield, UK http://www.ctsbridges.co.uk/

https://www.youtube.com/watch?v=CSn8_wNZLcg

2618. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/

2621. Composites UK (trade organization) https://compositesuk.co.uk/ Construction Sector Group

2625. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/

2627. Deck Industry Association http://www.deckindustry.org/resources.htm

2629. Dow Deutschland Inc. http://www.dow.com

2632. EPI, fabricator (Texas, USA) http://engpro.com/

2633. Engineering Composites Ltd. http://www.engineered-composites.co.uk

2634. EPTA (European Pultrusion Technology Association) http://pultruders.org/

2635. Exel Composites (UK) http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd.)

2636. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2637. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), (USA) http://www.fibergrate.com/

2638. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), (UK) http://www.fibergrate.co.uk/

2641. Fibrolux GMBH (Germany) [http://fibrolux.com/]
2642. Genesis Composites (UK) [http://www.genesiscomposites.co.uk/]
2644. GDP Koral, s.r.o. [http://www.gdpkoral.cz]
2645. IFE Pultrusion Exchange [http://www.fiberglass.com/fiberglass/a/fg5005.html]
2646. IIFC (Inter. Institute for FRP in Construction) [http://www.iifc-hq.org/]
2647. ISIS Canada [http://www.isiscanada.com/]
2648. James Quinn Associates Ltd. [http://www.jqal.co.uk/]
2649. Kemrock Industries & Exports Ltd. [http://www.kemrock.com/] (India)
2650. KaZaK Composites, Inc. [http://kazakcomposites.com/]
2651. Lee Composites, Inc. [www.leeocomposites.com]
2652. Liberty Pultrusions (West Mifflin, Pa.) [http://www.libertypultrusions.com/]
2653. Lionweld Kennedy, fabricator (UK) [http://www.lk-uk.com/]
2654. Martin Pultrusion Group [http://www.martinpultrusion.com/]
2655. NetComposites (UK) [http://www.netcomposites.com]
2656. Owens Corning Inc. [http://www.owenscorning.com]
2657. Pipex px, fabricator (UK) [https://www.pipexpx.com/]
2658. Polymec, Madrid, Spain [http://polymec.com/]
2660. PPG Industries UK Ltd. [http://ppg.com]
2661. Pultrall (Canadian pultruder) [http://www.pultrall.com/Site2008/index.htm]
2662. Pultrec (UK) [http://www.pultec.com/]
2663. Pultron Composites [http://www.pultron.com/] (New Zealand)
2664. Pultrusion Industry Council (USA) [http://www.pultrusionindustry.org/]
2665. Psychrometric Systems Inc. [http://www.psicoollingtowers.com/] FRP cooling towers

2667. Röchling (Germany) http://www.roechling-haren.de/

2669. Seasafe (pultruder) http://www.seasafe.com/

2670. Strongwell http://www.strongwell.com

2671. SXP Cooling technologies http://spxcooling.com/

2672. Top Glass SpA http://www.topglass.it

2673. Tufnol (UK) http://www.tufnol.com/

2676. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/

2677. Yprado http://www.yprado.eu/ windows and doors

2678. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/

J. T. Mottram ©