Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

Reflection

Reflection or reflectivity measurments are usually to examine the layer thickness of insulating layer on semiconducting substrates and epitaxial semiconductor films. The reflectance R of the structure( absorbing layer of thickness d1 on a nonabsorbing ) as show in Fig. 1(a) is given by

R = \frac{r_{1}^{2}e^{\alpha d_{1} }+ r_{2}^{2}e^{-\alpha d_{1}} + 2r_{1}r_{2}cos(\varphi_{1})}{e^{\alpha d_{1} }+ r_{1}^{2}r_{2}^{2}e^{-\alpha d_{1}} + 2r_{1}r_{2}cos(\varphi_{1})}    ---------(1)

 

                                   

                                  

                           reflection

                 Fig.1 (a) Reflection spectroscopy schematic; (b) theoretical reflectance for SiO2 on Si.

Tox= 100 mm, n0 = 1, n1= 1.46, and n2= 3.42, \phi =50^{0}

 

Where r_{1}=\frac{n_{0}-n_{1}}{n_{0}+n_{1}} ; r_{2}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} ; \varphi_{1}=\frac{4\pi n_{1}d_{1}cos(\phi^{/} ) }{\lambda } ; \phi^{/}=sin^{-1}[\frac{n_{0}sin(\phi )}{n_{1}}]

For a nonabsorbing layer,\alpha =0 in Eq.(1)

The reflectance exhibits maxima at the wavelengths (max)

\lambda (max)=\frac{2n_{1}d_{1}cos(\phi^{/} )}{m}           ---------(2)

Where m = 1,2,3,…

Taking Eq.(2) at two maxima and subtracting one from the other can give the layer thickness d1

d_{1}=\frac{i}{2n_{1}( \frac{1}{\lambda_{0} }-\frac{1}{\lambda_{i}})cos(\phi^{/} )}      ---------(3)

Where i= number of complete cycles from \lambda_{0} to \lambda_{i} , the two wavelength peaks that bracket the i cycles. For example in Fig. 1(b2) for the first two peaks, i= 1, \frac{1}{\lambda_{0}}= 1.62x105cm-1

and \frac{1}{\lambda_{1}}=1.22x105cm-1    or   i= 3, \frac{1}{\lambda_{0}}= 1.62x105cm-1 and  \frac{1}{\lambda_{3}}= 4.2x104cm-1 is obtained a similar thickness.



[Ref.] D.K. Schroder,Semiconductor material and device characterization, 2nd edition,John Wiley & Son,1998.