Skip to main content Skip to navigation

Latest Publications

Show all news items

Inference of infectious disease transmission through a relaxed bottleneck using multiple genomes per host

Jake Carson, Matt Keeling, David Wyllie, Paolo Ribeca, Xavier Didelot

Here we present a new methodology that can use any number of genomes sampled from a set of individuals to reconstruct their transmission network. Furthermore, we remove the need for the assumption of a complete transmission bottleneck. We use simulated data to show that our method becomes more accurate as more genomes per host are provided, and that it can infer key infectious disease parameters such as the size of the transmission bottleneck, within-host growth rate, basic reproduction number and sampling fraction. We demonstrate the usefulness of our method in applications to real datasets from an outbreak of Pseudomonas aeruginosa amongst cystic fibrosis patients and a nosocomial outbreak of Klebsiella pneumoniae.

Molecular Biology & Evolution. January 2024

Mon 12 Feb 2024, 08:20 | Tags: Microbiology & Infectious Disease