1. Let $f(T)$ be a non-constant rational function in one variable over the complex numbers. Suppose that p is a complex number, let m_p be the limiting value as ϵ tends to zero of the number of connected components of $\{z \in \mathbb{C} : 0 < |f(z) - p| < \epsilon\}$. We say f is totally ramified at p if $m_p = 1$.

 a) Show that m_p is the number of points in the Riemann sphere mapping to p under f. [5]

 b) Assume $m_p = 1$ and let $q = a/b$ be the unique point in the Riemann sphere so that $f(q) = p$ (with b possibly zero). Let h and g be the rational functions

 $$h(z) = 1/(z - p), \quad g(z) = (az + c)/(bz + d).$$

 Prove that the rational function $h \circ f \circ g$ is a polynomial for any complex numbers c, d. [10]

 c) Prove that the set of rational functions of degree n which are totally ramified at $p \in \mathbb{C}$ is the set of functions of the form $f(z) = p + \frac{(-bz+c)^n}{Q(dz-c,-bz+c)}$ for $ad - bc = 1$ and Q homogeneous of degree n. [10]
2. Let \(f(x, y) \) be an irreducible complex polynomial in two variables of total degree two. Suppose that the coefficient of \(x^2 \) is not zero.

 a) Prove that \(x \) is integral over \(\mathbb{C}[y] \) in the ring of polynomial functions on the zero set of \(f \).

 b) Suppose further that the zero set of \(df \wedge dy \) meets the zero set of \(f \) transversely at two points. Prove that there are finite Fourier series \(x(z) \) and \(y(z) \) such that the function
 \[
 \{ z \in \mathbb{C} : 0 \leq \text{Im}(z) < 2\pi \} \to \mathbb{C}^2
 \[x \mapsto (x(z), y(z)) \]
 is a bijection onto the zero set of \(f \).

3. Suppose \(f \) and \(h \) are non-constant holomorphic functions on \(\mathbb{C}^2 \).

 a) Give an example to show that the restriction of \(h \) to the zero set of \(f \) need not always be proper. You do not need to justify your example.

 b) Suppose the zero set of \(f \) meets the zero set of \(df \wedge dh \) in the generic way, i.e., with at worst simple crossings. Prove that the inequality
 \[
 2g - 2 \leq d - m + m_t
 \]
 holds, where \(g \) is the genus of the curve \(f = 0 \), \(m \) is the number of simultaneous solutions of \(f = 0, df \wedge dh = 0 \) and \(m_t \) is the limiting number of connected components of the set of \((x, y) \) with \(f(x, y) = 0, |h(x, y)| > B \) as \(B \) tends to infinity.

 c) Prove that the inequality (*) is an equality if the two coordinates \(x \) and \(y \) are integral over \(\mathbb{C}[h] \) in the ring of polynomial functions on the zero set of \(f \).

4. The Gaussian integers \(\mathbb{Z}[i] \) are the complex numbers of the form \(m + ni \) for \(m, n \in \mathbb{Z} \). Let \(f \) and \(g \) be two meromorphic function of one variable which are holomorphic at all points of \(\mathbb{C} \setminus \mathbb{Z}[i] \), and satisfy \(f(z+1) = f(z) \) and \(f(z+i) = f(z) \) and also likewise \(g(z+1) = g(z) \) and \(g(z+i) = g(z) \) for all \(z \in \mathbb{C} \).

 a) Prove that if \(f \) has at most simple poles then \(f \) is holomorphic everywhere.

 b) Let \(p, q \) be complex numbers. Suppose that \(g \) has a simple zero at all complex numbers which are congruent to \(p \) or \(q \) modulo \(\mathbb{Z}[i] \) but nowhere else. Prove that either the sum \(p + q \) or the difference \(p - q \) is a Gaussian integer.
MA 3G6

5. Suppose τ is a complex number with $\text{Im}(\tau) > 0$. Let E be the elliptic curve

$$\mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau).$$

In this question you may assume that divisors of degree 3 on E are very ample.

a) Define the theta function $\theta(z, \tau)$.\[5]

b) Let f be a meromorphic function on E with a pole of order at most six at $(1 + \tau)/2$. Prove that there exists a unique quadratic form $Q(x_1, x_2, x_3)$ such that

$$f(z) = Q(\theta(z, \tau)^3, \theta(2z, 2\tau), \theta(z, \tau), \theta(3z, 3\tau))/\theta(z, \tau)^3$$

(hint: it is a dimension count).\[5]

c) Conclude that every such meromorphic function is uniquely expressed as a polynomial in $\theta(2z, 2\tau)/\theta(z, \tau)^2$ and $\theta(3z, 3\tau)/\theta(z, \tau)^3$ of degree at most two.\[5]

d) What are the six coefficients of the polynomial of total degree at most two which produces a meromorphic function which has a double zero at each of $1/6 + \tau/2$ and $5/6 + \tau/2$ and a quadruple pole at $1 + \tau/2$ (hint: consider first the zeroes and poles of $\theta(3z, 3\tau)$).\[10]