1. a) Let $\Sigma = \prod_{n=0}^{\infty} \{1, \ldots, N\}$ be a space of sequences with the metric

$$d(x, y) = \sum_{n=0}^{\infty} \frac{e(x_n, y_n)}{2^n}$$

where $x = (x_n)_{n=0}^{\infty}, y = (y_n)_{n=0}^{\infty} \in \Sigma$ and

$$e(i, j) = \begin{cases} 1 & \text{if } i \neq j; \\ 0 & \text{if } i = j. \end{cases}$$

Show that Σ is compact. [7]

b) Given a $N \times N$ matrix A with entries 0 and 1 define the space $\Sigma_A \subset \Sigma$ and the subshift of finite type: $\Sigma_A \to \Sigma_A$.

Define what it means for $\sigma : \Sigma_A \to \Sigma_A$ to be (topologically) transitive. State without proof how this is characterized in terms of the matrix A.

Define what it means for $\sigma : \Sigma_A \to \Sigma_A$ to be (topologically) mixing. State without proof how this is characterized in terms of the matrix A. [10]

c) Define what it means for x to be a periodic point of period n.

Show that the number of periodic points of period n is given by the trace of the n-fold matrix product A^n, for $n \geq 1$. [8]
2. a) Define what it means for $T : K \rightarrow K$ to be an expanding map on the unit circle $K = \mathbb{R}/\mathbb{Z}$.
 Let $\sigma : \Sigma \rightarrow \Sigma$ be the fullshift on N symbols on $\Sigma = \prod_{n=0}^{\infty} \{1, \ldots, N\}$. Define what it means for a map $\pi : \Sigma \rightarrow K$ to be a semi-conjugacy. \[6\]
 b) Show that there is a semi-conjugacy between the full shift on 2 symbols and the expanding map $T : K \rightarrow K$ given by $T(x) = 2x \pmod{1}$. \[12\]
 c) State explicitly the periodic points of period $n \geq 1$ for the map $T : K \rightarrow K$ given by $T(x) = 2x \pmod{1}$.
 Let $N(n)$ denote the number of periodic points of period n for this map T. We denote the zeta function by the complex function
 \[\zeta(z) = \exp \left(\sum_{n=1}^{\infty} \frac{z^n}{n} N(n) \right), \quad z \in \mathbb{C}, \]
 which is well defined when $|z| < \frac{1}{2}$. Show that $\zeta(z)$ extends to the entire complex plane as a rational function. \[7\]

3. Let $T : X \rightarrow X$ be a continuous map on a compact metric space.
 a) Define what it means for $Y \subset X$ to be a (n, ϵ)-spanning set for T.
 Define what it means for $Y \subset X$ to be a (n, ϵ)-separated set for T. \[6\]
 b) Let $N(n, \epsilon)$ denote the least cardinality of any (n, ϵ)-spanning set. Let $S(n, \epsilon)$ denote the largest cardinality of any (n, ϵ)-separated set. Show that:
 i) $N(n, \epsilon) \leq S(n, \epsilon)$;
 ii) $S(n, \epsilon) \leq N(n, \epsilon/2)$.
 Define the topological entropy $h(T)$ of $T : X \rightarrow X$ in terms of spanning sets.
 Define the topological entropy of $T : X \rightarrow X$ in terms of separating sets.
 Show that these two definitions are equivalent. \[11\]
 c) Let $T : X \rightarrow X$ be a homeomorphism of a compact metric space D with metric d. We say that T is an isometry if $d(Tx, Ty) = d(x, y)$, for any $x, y \in X$. Show that $h(T) = 0$. \[8\]

4. a) Define what it means for a homeomorphism of a compact metric space to be minimal. Let $f : K \rightarrow K$ be the rotation of the circle $K = \mathbb{R}/\mathbb{Z}$ defined by $f(x) = x + \alpha \pmod{1}$ where $0 \leq \alpha < 1$. Show that f is minimal if $0 < \alpha < 1$ is irrational. \[8\]
5. Let A be a 2×2 matrix with integer entries and determinant 1. Assume that A has no eigenvalues with absolute value 1.

a) Define the linear hyperbolic toral automorphism $T : \mathbb{T}^2 \to \mathbb{T}^2$ associated with A.

b) Show that the periodic points for $T : \mathbb{T}^2 \to \mathbb{T}^2$ are precisely those points which have rational coordinates.

c) Define what it means for a sequence of points $(x_n)_{n=-\infty}^{\infty}$ to be a δ-pseudo orbit for T.

Define the Shadowing Property for T.

d) We say that any homeomorphism $S : \mathbb{T}^2 \to \mathbb{T}^2$ is expansive if there exists a constant $\delta > 0$ such that if $d(S^n x, S^n y) < \delta$ for all $n \in \mathbb{Z}$ then $x = y$.

Show that for an expansive homeomorphism the rate of growth of the periodic points is less than the topological entropy, i.e.,

$$\limsup_{n \to +\infty} \frac{1}{n} \log (\text{Card}\{x : S^n x = x\}) \leq h(S).$$