Mathematics and Physics (BSc) (Full-Time, 2021 Entry)
This course is closed
for Clearing 2024
This course is closed for Clearing 2022
If you would like to study at Warwick, there are other courses available for 2025 entry.
UCAS Code
GF13
Qualification
Bachelor of Science (BSc)
Duration
3 years full-time
Start Date
27 September 2021
Department of Study
Department of Physics
Location of Study
University of Warwick
Mathematics and Physics are complementary disciplines, making them a natural combination for university study. Mathematicians and physicists often address common questions and challenges, resulting in exciting unexpected discoveries at the intersection of the two subjects.
Course overview
Mathematics and Physics are complementary disciplines, making them a natural combination for university study. Mathematicians and physicists often address common questions and challenges, resulting in exciting discoveries at the intersection of the two subjects. Ideas developed in particle physics have led to advances in geometry; learning from chaos theory is being applied increasingly in the modeling of complex physical systems such as the atmosphere and lasers. You’ll be jointly taught by the Institute of Mathematics and Department of Physics, both of which have a reputation for excellence. In addition to core modules, you’ll have flexibility in your second and third years to choose modules to explore areas of interest in more depth. You may also choose to develop a breadth of learning by selecting from approved modules outside the two departments, such as the interdisciplinary module Challenges of Climate Change or learning a modern language. Further in-depth information can be found in the Maths and Physics Undergraduate brochure.
Course structure
The Warwick joint degree course is among the best established in the country and the course includes a number of modules from both contributing departments designed specifically for joint degree students.
In the first year you take essential (core) modules in both mathematics and physics. You also take at least one additional module chosen from a list of options. At the end of the first year it is possible to change to either of the single honours courses, providing you satisfy certain requirements in the end of year examinations.
In the second and third years, there is considerable freedom to choose modules. By then you will have a good idea of your main interests and be well placed to decide which areas of mathematics and physics to study in greater depth.
Contact hours
You should expect to attend around 14 lectures a week, supported by weekly supervision meetings, problems classes and personal tutorials. For each 1 hour lecture, you should expect to put in a further 1-2 hours of private study.
Class size
Lecture size will naturally vary from module to module. The first year core modules may have up to 350 students in a session, whilst the more specialist modules in the later years will have fewer than 100. The core physics modules in the first year are supported by weekly classes, at which you and your fellow students meet in small groups with a member of the research staff or a postgraduate student. Tutorials with your personal tutor and weekly supervision sessions are normally with a group of 5 students.
How will I be assessed?
Most lecture modules are assessed by 15% coursework and 85% final examinations or by 100% exam, with almost all exams taken in the third term. Essays and projects, such as the final-year project, are assessed by coursework and an oral presentation.
The weighting for each year's contribution to your final mark is 10:30:60 for the BSc courses.
Study abroad
We support student mobility through study abroad programmes. BSc students have the opportunity to apply for an intercalated year abroad at one of our partner universities.
The Study Abroad Team based in the Office for Global Engagement offers support for these activities. The Department's Study Abroad Co-ordinator can provide more specific information and assistance.
Work experience
All students can apply for research vacation projects - small research projects supervised by a member of academic staff. BSc students can register for the Intercalated Year Scheme, which involves spending a year in scientific employment or UK industry between their second and final year.
General entry requirements
A level:
- A*AA to include A* in Mathematics, A in Further Mathematics and A in Physics
- For students not taking A level Further Mathematics, the typical offer is A* (Mathematics), A* (Physics) and A in a third subject at A level
IB:
- 38 to include 7 in Higher Level Mathematics (‘Analysis and Approaches’ only) and 6 in Higher Level Physics
BTEC:
- We will consider applications from students taking a BTEC in a relevant Science/Engineering alongside A level Maths and Further Maths on an individual basis
Additional requirements:
You will also need to meet our English Language requirements.
International Students
We welcome applications from students with other internationally recognised qualifications.
Find out more about international entry requirements.
Contextual data and differential offers
Warwick may make differential offers to students in a number of circumstances. These include students participating in the Realising Opportunities programme, or who meet two of the contextual data criteria. Differential offers will be one or two grades below Warwick’s standard offer (to a minimum of BBB).
Warwick International Foundation Programme (IFP)
All students who successfully complete the Warwick IFP and apply to Warwick through UCAS will receive a guaranteed conditional offer for a related undergraduate programme (selected courses only).
Find out more about standard offers and conditions for the IFP.
Taking a gap year
Applications for deferred entry welcomed.
Interviews
We do not typically interview applicants. Offers are made based on your UCAS form which includes predicted and actual grades, your personal statement and school reference.
Year One
Calculus
Calculus is the mathematical study of continuous change. In this module there will be considerable emphasis throughout on the need to argue with much greater precision and care than you had to at school. With the support of your fellow students, lecturers and other helpers, you will be encouraged to move on from the situation where the teacher shows you how to solve each kind of problem, to the point where you can develop your own methods for solving problems. By the end of the year you will be able to answer interesting questions like, what do we mean by `infinity'?
Sets and Numbers
It is in its proofs that the strength and richness of mathematics is to be found. University mathematics introduces progressively more abstract ideas and structures, and demands more in the way of proof, until most of your time is occupied with understanding proofs and creating your own. Learning to deal with abstraction and with proofs takes time. This module will bridge the gap between school and university mathematics, taking you from concrete techniques where the emphasis is on calculation, and gradually moving towards abstraction and proof.
Linear Algebra
Linear algebra addresses simultaneous linear equations. You will learn about the properties of vector space, linear mapping and its representation by a matrix. Applications include solving simultaneous linear equations, properties of vectors and matrices, properties of determinants and ways of calculating them. You will learn to define and calculate eigenvalues and eigenvectors of a linear map or matrix. You will have an understanding of matrices and vector spaces for later modules to build on.
Differential Equations
Can you predict the trajectory of a tennis ball? In this module you cover the basic theory of ordinary differential equations (ODEs), the cornerstone of all applied mathematics. ODE theory proves invaluable in branches of pure mathematics, such as geometry and topology. You will be introduced to simple differential and difference equations and methods for their solution. You will cover first-order equations, linear second-order equations and coupled first-order linear systems with constant coefficients, and solutions to differential equations with one-and two-dimensional systems. We will discuss why in three dimensions we see new phenomena, and have a first glimpse of chaotic solutions.
Physics Foundations
You will look at dimensional analysis, matter and waves. Often the qualitative features of systems can be understood (at least partially) by thinking about which quantities in a problem are allowed to depend on each other on dimensional grounds. Thermodynamics is the study of heat transfers and how they can lead to useful work. Even though the results are universal, the simplest way to introduce this topic to you is via the ideal gas, whose properties are discussed and derived in some detail. You will also cover waves. Waves are time-dependent variations about some time-independent (often equilibrium) state. You will revise the relation between the wavelength, frequency and velocity and the definition of the amplitude and phase of a wave.
Electricity and Magnetism
You will largely be concerned with the great developments in electricity and magnetism, which took place during the nineteenth century. The origins and properties of electric and magnetic fields in free space, and in materials, are tested in some detail and all the basic levels up to, but not including, Maxwell's equations are considered. In addition, the module deals with both dc and ac circuit theory including the use of complex impedance. You will be introduced to the properties of electrostatic and magnetic fields, and their interaction with dielectrics, conductors and magnetic materials.
Classical Mechanics and Special Relativity
You will study Newtonian mechanics emphasizing the conservation laws inherent in the theory. These have a wider domain of applicability than classical mechanics (for example they also apply in quantum mechanics). You will also look at the classical mechanics of oscillations and of rotating bodies. It then explains why the failure to find the ether was such an important experimental result and how Einstein constructed his theory of special relativity. You will cover some of the consequences of the theory for classical mechanics and some of the predictions it makes, including: the relation between mass and energy, length-contraction, time-dilation and the twin paradox.
Quantum Phenomena
This module explains how classical physics is unable to explain the properties of light, electrons and atoms. (Theories in physics, which make no reference to quantum theory, are usually called classical theories.) It covers the most important contributions to the development of quantum physics including: wave-particle 'duality', de Broglie's relation and the Schrodinger equation. It also looks at applications of quantum theory to describe elementary particles: their classification by symmetry, how this allows us to interpret simple reactions between particles and how elementary particles interact with matter.
Physics Programming Workshop
You will be introduced to the Python programming language in this module. It is quick to learn and encourages good programming style. Python is an interpreted language, which makes it flexible and easy to share. It allows easy interfacing with modules, which have been compiled from C or Fortran sources. It is widely used throughout physics and there are many downloadable free-to-user codes available. You will also look at the visualisation of data. You will be introduced to scientific programming with the help of the Python programming language, a language widely used by physicists.
Year Two
Analysis III
In the first half of this module, you will investigate some applications of year one analysis: integrals of limits and series; differentiation under an integral sign; a first look at Fourier series. In the second half you will study analysis of complex functions of a complex variable: contour integration and Cauchy’s theorem, and its application to Taylor and Laurent series and the evaluation of real integrals.
Methods of Mathematical Physics
On this module, you will learn the mathematical techniques required by second-, third- and fourth-year physics students. Starting with the theory of Fourier transforms and the Dirac delta function, you will learn why diffraction patterns in the far-field limit are the Fourier transforms of the ‘diffracting’ object before moving to diffraction more generally, including in the light of the convolution theorem. You will also be introduced to Lagrange multipliers, co-ordinate transformations and Cartesian tensors, which will be illustrated with examples of their use in physics.
Multivariable Calculus
There are many situations in pure and applied mathematics where the continuity and differentiability of a function f: R n. → R m has to be considered. Yet, partial derivatives, while easy to calculate, are not robust enough to yield a satisfactory differentiation theory. In this module you will establish the basic properties of this derivative, which will generalise those of single-variable calculus. The module will review line and surface integrals, introduce div, grad and curl and establish the divergence theorem.
Partial Differential Equations
The theory of partial differential equations (PDE) is important in both pure and applied mathematics. Since the pioneering work on surfaces and manifolds by Gauss and Riemann, PDEs have been at the centre of much of mathematics. PDEs are also used to describe many phenomena from the natural sciences (such as fluid flow and electromagnetism) and social sciences (such as financial markets). In this module you will learn how to classify the most important partial differential equations into three types: elliptic, parabolic, and hyperbolic. You will study the role of boundary conditions and look at various methods for solving PDEs.
Variational Principles
This course will introduce you to the calculus of variations and to appreciate its centrality to the formulation and understanding of physical laws and problems in geometry. At its conclusion, you should be able to set up and solve minimisation problems with and without constraints, derive Euler-Lagrange equations and appreciate how the laws of mechanics and geometrical problems involving least length and least area fit into this framework.
Physics of Fluids
The field of fluids is one of the richest and most easily appreciated in physics. Tidal waves, cloud formation and the weather generally are some of the more spectacular phenomena encountered in fluids. In this module you will establish the basic equations of motion for a fluid - the Navier-Stokes equations - and show that in many cases they can yield simple and intuitively appealing explanations of fluid flows. You will be concentrating on incompressible fluids.
Quantum Mechanics and its Applications
In the first part of this module you will use ideas, introduced in the first year module, to explore atomic structure. You will discuss the time-independent and the time-dependent Schrödinger equations for spherically symmetric and harmonic potentials, angular momentum and hydrogenic atoms. The second half of the module looks at many-particle systems and aspects of the Standard Model of particle physics. It introduces the quantum mechanics of free fermions and discusses how it accounts for the conductivity and heat capacity of metals and the state of electrons in white dwarf stars.
Thermal Physics II
Any macroscopic object we meet contains a large number of particles, each of which moves according to the laws of mechanics (which can be classical or quantum). Yet, we can often ignore the details of this microscopic motion and use a few average quantities such as temperature and pressure to describe and predict the behaviour of the object. Why we can do this, when we can do this and how to do it are the subject of this module. The most important idea in the field is due to Boltzmann, who identified the connection between entropy and disorder. The module shows you how the structure of equilibrium thermodynamics follows from Boltzmann's definition of the entropy and shows you how, in principle, any observable equilibrium quantity can be computed.
Electromagnetic Theory and Optics
You will develop the ideas of first year electricity and magnetism into Maxwell's theory of electromagnetism. Maxwell's equations pulled the various laws of electricity and magnetism (Faraday's law, Ampere's law, Lenz's law, Gauss's law) into one unified and elegant theory. The module shows you that Maxwell's equations in free space have time-dependent solutions, which turn out to be the familiar electromagnetic waves (light, radio waves, X-rays, etc.), and studies their behaviour at material boundaries (Fresnel Equations). You will also cover the basics of optical instruments and light sources.
Year Three
Communicating Science
Employers look for many things in would-be employees. Sometimes they will be looking for specific knowledge, but often they will be more interested in general skills, frequently referred to as transferable skills. One such transferable skill is the ability to communicate effectively, both orally and in writing. Over the past two years you may have had experience in writing for an academic audience in the form of your laboratory reports. The aim of this module is to introduce you to the different approaches required to write for other audiences. This module will provide you with experience in presenting technical material in different formats to a variety of audiences.
Examples of optional modules/options for current students:
- Probability
- Programming for Scientists
- Geometry
- Metric Spaces
- Functional Analysis
- Galaxies
- Astrophysics
- Physics in Medicine
- The Solar System
- Hamiltonian Mechanics
- Electrodynamics
Tuition fees
Find out more about fees and funding
Additional course costs
There may be costs associated with other items or services such as academic texts, course notes, and trips associated with your course. Students who choose to complete a work placement or study abroad will pay reduced tuition fees for their third year.
Warwick Undergraduate Global Excellence Scholarship 2021
We believe there should be no barrier to talent. That's why we are committed to offering a scholarship that makes it easier for gifted, ambitious international learners to pursue their academic interests at one of the UK's most prestigious universities. This new scheme will offer international fee-paying students 250 tuition fee discounts ranging from full fees to awards of £13,000 to £2,000 for the full duration of your Undergraduate degree course.
Find out more about the Warwick Undergraduate Global Excellence Scholarship 2021
Your career
Graduates from this course have gone on to work for employers including:
- Deloitte Digital
- Brunei Shell Petroleum
- British Red Cross
- EDF Energy
- Civil Service
- Deutsche Bank
They have pursued roles such as:
- physical scientists
- finance and investment analysts
- programmers and software development professionals
- graphic designers
- researchers
Helping you find the right career
Our department has a dedicated professionally qualified Senior Careers Consultant to support you. They offer impartial advice and guidance, together with workshops and events throughout the year. Previous examples of workshops and events include:
- Career options with a Physics Degree
- Careers in Science
- Warwick careers fairs throughout the year
- Physics Alumni Evening
- Careers and Employer networking event for Physics students
“The overlap – using cool maths to explain the phenomena we see around us – is what I am particularly interested in. I don’t just want to be told the answers though; being able to learn more deeply, and fully understand these problems is much more important to me. It has enabled me to develop so many useful skills, alongside learning more about my subjects.”
Beth
MMathPhys Mathematics and Physics graduate
This information is applicable for 2021 entry. Given the interval between the publication of courses and enrolment, some of the information may change. It is important to check our website before you apply. Please read our terms and conditions to find out more.