Research Areas & Opportunities
The Roper group's research interests are in focused in several main areas:
- Peptidoglycan Biosynthesis: The majority of my work is concentrated on understanding the molecular mechanisms that underpin the biosynthesis of peptidoglycan pathogens with particular emphasis on the way in which cell shape is determined and controlled by RodA-PBP and the wider elongasome. This involved coordination of processes from inside to outside the cell membrane
- Bacteria Cell division: Cell division is the largest morphological change that any cell undergoes and has common elements in all forms of life. In bacteria this is controlled by a dynamic complex of proteins, many of which are located at or in the cell membrane making their study and analysis challenging. FtsZ and the proteins which interact are of key interest in that respect.
- New antibacterial drug discovery: Our studies on cell division and their linkage to peptidoglycan synthesis has an intimate connection to the targets of existing and potentially future antimicrobial drugs. We are investigating a number of these including the potential of the lipid II polymerisation process as a target for such drugs.
- Molecular Mechanisms of Antibiotic resistance: We are interested in the molecular mechanisms of antibiotic resistance, in relation to the biosynthesis of the cell wall including the mode of action of the lipid II sequestering antibiotic, vancomycin and our discovery of the way in which D-cycloserine targets three different aspects of peptidoglycan biosynthesis.
We have a number of possible Mbio, Mini projects and full PhD project opportunities as per the below:
1. Utilizing nanodisc technology to understand the biology of late stage bacterial cell division proteins
2. Exploring protein-protein interactions in bacterial cell division: targets for next generation antibiotic discovery?
3. Investigating the role of bacteria Serine-Threonine kinases in antibiotic resistance
4. Protein complexes required for Methicillin resistance in S. aureus
5. Fueling the bacterial cell wall biosynthetic pipeline, PPIs required for cell wall biosynthesis
6. Next generation Inhibitor discovery in bacterial peptidoglycan biosynthesis: glycosyltransferases