Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

Ultrafast & Terahertz Photonics Group

Recent publications from the group [all | THz | perovskites | nano | biomedical]

Select tags to filter on

Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility

M. Monti, K.D.G.I. Jayawardena, E. Butler-Caddle, R.M.I. Bandara, J.M. Woolley, M. Staniforth, S.R.P. Silva and J. Lloyd-Hughes
Phys. Rev. B 102 245204 (Dec 2020) [ pdf ] [ ref ]

Hot carrier temperaturesThe electron-phonon interaction controls the intrinsic mobility of charges in metal halide perovskites, and determines the rate at which carriers lose energy. Here, the carrier mobility and cooling dynamics were directly examined using a combination of ultrafast transient absorption spectroscopy and optical pump, THz probe spectroscopy, in perovskites with different lead and tin content, and for a range of carrier densities. Significantly, the carrier mobility in the “hot phonon bottleneck” regime, where the LO phonon bath keeps carriers warm, was found to be similar to the mobility of cold carriers. A model was developed that provides a quantitative description of the experimental carrier cooling dynamics, including electron-phonon coupling, phonon-phonon coupling and the Auger mechanism. In the Pb and Sn alloy the duration of the hot carrier regime was extended as a result of the slower decay of optical phonons. The findings offer an intuitive link between macroscopic properties and the underlying microscopic energy transfer processes, and suggest new routes to control the carrier cooling process in metal halide perovskites to optimize optoelectronic devices.



Thu 24 Dec 2020, 10:00 | Tags: THz spectroscopy, photoluminescence, perovskites, Lloyd-Hughes, 2020

Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films

M.G. Burdanova, G.M. Katybab, R. Kashtiban, G.A. Komandin, E. Butler-Caddle, M. Staniforth, A.A. Mkrtchyan, D.V. Krasnikov, Y.G. Gladush, J.Sloan, A.G. Nasibulin and J. Lloyd-Hughes
Carbon 173 245 (Mar 2021) [ free e-print ] [ pdf ] [ ref ]

1D van der Waals hetereostructuresThe development of THz technology and communication systems is creating demand for devices that can modulate THz beams rapidly. Here we report the design and characterisation of high-performance, broadband THz modulators based on the photo-induced transparency of carbon nanotube films. Rather than operating in the standard modulation mode, where optical excitation lowers transmission, this new class of modulators exhibits an inverted modulation mode with an enhanced transmission. Under femtosecond pulsed illumination, modulation depths reaching +80% were obtained simultaneously with modulation speeds of 340 GHz. The influence of the film thickness on the insertion loss, modulation speed and modulation depth was explored over a frequency range from 400 GHz to 2.6 THz. The excellent modulation depth and high modulation speed demonstrated the significant potential of carbon nanotube thin films for ultrafast THz modulators.

Fri 13 Nov 2020, 04:30 | Tags: THz spectroscopy, THz components, nanomaterials, Lloyd-Hughes, 2021

Exploiting Complementary Terahertz Ellipsometry Configurations to Probe the Hydration and Cellular Structure of Skin In Vivo

X. Chen, Q. Sun, J. Wang, H. Lindley-Hatcher, E. Pickwell-MacPherson
Adv. Photonics Res. 2000024 (November 2020) [ pdf ] [ ref ]

DiagramThe noninvasive and water‐sensitive characteristics of terahertz (THz) light make it highly attractive for in vivo studies, especially for skin applications. However, THz instrumentation has not been developed sufficiently to fully explore all the potential applications arising: current systems cannot obtain uncorrelated reflections from multiple configurations to determine the complicated structure of living tissues. Herein, this bottleneck is overcome by implementing a novel ellipsometry configuration able to efficiently provide four complementary sets of spectral ratios, significantly enhancing characterization capabilities. An accurate model of the skin is established and validated. The anisotropy of the stratum corneum (SC) caused by its cellular structure is verified both theoretically and experimentally. The in vivo response of skin on the volar forearm to occlusion is observed by the dynamic changes in the SC and the epidermis. In addition, the THz dispersion and birefringence sensitively probe the level of hydration and the cellular inhomogeneity, producing results in good agreement with microscope images and the biological processes of the SC. The presented technique offers a brand‐new functionality in extracting insightful structural information from complex systems, significantly extending the versatility of THz spectroscopy.

Tue 10 Nov 2020, 10:00 | Tags: THz spectroscopy, MacPherson, biomedical, 2020

Nanotechnology for catalysis and solar energy conversion

, , , , , , , , , , , , , , , , ,

This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure–property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.

Mon 09 Nov 2020, 17:46 | Tags: THz spectroscopy, nanomaterials, Milot, perovskites, 2020

Older news