Skip to main content Skip to navigation

Ultrafast & Terahertz Photonics Group

Research areas

Nanomaterials

We use pump/probe spectroscopy to study how light and matter interact on femtosecond to nanosecond timescales. Using visible probes we can track electronic processes, while infrared radiation lets us study vibrational states of molecules and atomic-scale defects in semiconductors.

CNT

Recent papers:

...more papers

Terahertz medical imaging

Performing in vivo studies of the THz properties of skin is a major initiative in the group, supported by the EPSRC Terabotics Programme GrantLink opens in a new window. We develop robust measurement protocols and test them on a statistically significant number of patients, cross-checking with other methods.

Medical

Recent papers:

...more papers

Semiconductors and Energy materials

A major strand of our research is to improve our knowledge of the fundamental science underpinning new semiconductor materials, such as metal-halide perovskites, which are often attractive for photovoltaic applications.

Electronically-delayed optical pump/THz probe spectroscopy on a variety of semiconductors

Recent papers:

...more papers

Terahertz components, methods and techniques

We develop new THz devices and integrate them into novel systems designs that can perform THz imaging and THz spectroscopy faster, and with increased capabilities (e.g. polarisation control; robot-controlled probes).

Single-pixel

Recent papers:

...more papers

Recent publication highlights [filter by topic: view all | highlights | THz | perovskites | nano | biomedical]

Select tags to filter on

Papers from 2016 (JLH only)

Terahertz quantum Hall effect for spin-split heavy-hole gases in strained Ge quantum wellsLink opens in a new window
table of content figure M. Failla, J. Keller, G. Scalari, C. Maissen, J. Faist, C. Reichl, W. Wegscheider, O. J. Newell, D. R. Leadley, M. Myronov, J. Lloyd-Hughes
New J. Phys. 18:113036 (Nov 2016) [ pdfLink opens in a new window ][ ref ]
Spin-split heavy-hole gases in strained germanium quantum wells were characterized by polarisation-resolved terahertz time-domain spectroscopy. Effective masses, carrier densities, g-factors, transport lifetimes, mobilities and Rashba spin-splitting energies were evaluated, giving quantitative insights into the influence of strain. The Rashba coefficient was found to lower for samples with higher biaxial compressive strain, while heavy-hole mobilities were enhanced to over 1.5x106cm2V−1s−1 at 3 K. This high mobility enabled the observation of the optical quantum Hall effect at terahertz frequencies for spin-split two-dimensional heavy-holes, evidenced as plateaux in the transverse magnetoconductivity at even and odd filling factors.

Tue 01 Nov 2016, 13:00 | Tags: THz spectroscopy, nanomaterials, Lloyd-Hughes, 2016