Skip to main content Skip to navigation

Ultrafast & Terahertz Photonics: Publications

Filter by PI:

Filter by topic:

 

Select tags to filter on

Distinguishing carrier transport and interfacial recombination at perovskite/transport-layer interfaces using ultrafast spectroscopy and numerical simulation

Charge transport layers

E. Butler-Caddle, K.D.G.I. Jayawardena, A. Wijesekara, R.L. Milot and J. Lloyd-Hughes
Phys. Rev. Applied 22 024103 (Aug 2024)


Temperature-Dependent Structural and Optoelectronic Properties of the Layered Perovskite 2-Thiophenemethylammonium Lead Iodide

ThMAPbI

Justas Deveikis, Marcin Giza, David Walker, Jie Liu, Claire Wilson, Nathaniel P. Gallop, Pablo Docampo, James Lloyd-Hughes and Rebecca L. Milot
J. Phys. Chem. C , (July 2024)

Mon 05 Aug 2024, 22:27 | Tags: photoluminescence, Milot, 2024, perovskites, Lloyd-Hughes

Tunable Photoluminescence from Monolayer Molybdenum Disulfide

Shaping

BFM Healy, SL Pain, J. Lloyd-Hughes, NE Grant and JD Murphy
Adv. Mater. Interfaces 11 015002 (Jul 2024)

Wed 10 Jul 2024, 13:55 | Tags: nanomaterials, 2024, Lloyd-Hughes

Simultaneous measurement of orthogonal terahertz fields via an emission multiplexing scheme

Diagram

H. Ou, R.I. Stantchev, X. Chen, T. Blu, M. Semtsiv, W.T. Masselink, A. Hernandez Serrano, G. Costa, J. Young, N. Chopra, J. Lloyd-Hughes, and E. Pickwell-MacPherson
Optics Express 32, 5567 (Feb 2024)

Fri 02 Feb 2024, 16:17 | Tags: THz spectroscopy, THz components, MacPherson, 2024, Lloyd-Hughes

Quantifying photoluminescence variability in monolayer molybdenum disulfide films grown by chemical vapour deposition

Shaping

BFM Healy, SL Pain, J. Lloyd-Hughes, NE Grant and JD Murphy
Materials Research Express 11 015002 (Jan 2024)

Tue 23 Jan 2024, 07:24 | Tags: nanomaterials, photoluminescence, 2024, Lloyd-Hughes

The 3237 cm−1 diamond defect: Ultrafast vibrational dynamics, concentration calibration, and relationship to the N3VH0 defect

3237

T.J. Keat, D. J. L. Coxon, R.J. Cruddace, V. G. Stavros, M. E. Newton, and J. Lloyd-Hughes
Diamond and Related Materials 141 110661 (Jan 2024)

Thu 07 Dec 2023, 12:17 | Tags: nanomaterials, 2024, Lloyd-Hughes, ultrafast

Optimum Optical Designs for Diffraction-Limited Terahertz Spectroscopy and Imaging Systems Using Off-Axis Parabolic Mirrors

Shaping

N. Chopra and J. Lloyd-Hughes
J Infrared Milli Terahz Waves 44, 981 (Nov 2023)


Terahertz Emission via Optical Rectification in a Metal-Free Perovskite Crystal

mDABCO

Nathaniel P. Gallop, Dumitru Sirbu, David Walker, James Lloyd-Hughes, Pablo Docampo and Rebecca L. Milot
ACS Photonics 10 4022 (October 2023)

Thu 02 Nov 2023, 07:36 | Tags: THz spectroscopy, Milot, perovskites, Lloyd-Hughes, 2023, ultrafast, highlight

High-bandwidth perovskite photonic sources on silicon

LED

A. Ren, H. Wang, L. Dai, J. Xia, E. Butler-Caddle, J.A. Smith, ... S.A. Hindmarsh, A.M. Sanchez, J. Lloyd-Hughes, S. J Sweeney, ... and Wei Zhang
Nature Photonics 17, 798–805 (July 2023)


Ultrafast THz spectroscopy of carbon nanotube-graphene composites

CNT

M.G. Burdanova, A.P. Tsapenko, S. Ahmad, E.I. Kauppinen and J. Lloyd-Hughes
Nanotechnology 34 405203 , (June 2023)

Wed 28 Jun 2023, 07:26 | Tags: THz spectroscopy, nanomaterials, Lloyd-Hughes, 2023, ultrafast

Spectroscopic Insights into the Influence of Filling Carbon Nanotubes with Atomic Nanowires for Photophysical and Photochemical Applications

HgTe

Z. Hu, B. Breeze, M. Walker, E. Faulques, J. Sloan and J. Lloyd-Hughes
ACS Appl. Nano Mater. 6, 2883 (Feb 2023)

Wed 08 Feb 2023, 16:28 | Tags: nanomaterials, Lloyd-Hughes, 2023, ultrafast

Active THz beam shaping using a one-dimensional array of photoconductive emitters

Shaping

N. Chopra, J. Deveikis and J. Lloyd-Hughes
Appl. Phys. Lett. 122 061102 (Feb 2023)

Tue 07 Feb 2023, 11:28 | Tags: THz spectroscopy, Lloyd-Hughes, THz imaging, 2023

Tunable THz flat zone plate based on stretchable single-walled carbon nanotube thin film

CNT THz Fresnel lenses

G.M. Katyba, N.I. Raginov, E.M. Khabushev, V.A. Zhelnov, A. Gorodetsky, D.A. Ghazaryan, M.S. Mironov, D.V. Krasnikov, Y.G. Gladush, J. Lloyd-Hughes, A.G. Nasibulin, A.V. Arsenin, V.S. Volkov, K.I. Zaytsev, and M.G. Burdanova
Optica 10, 53 (Jan 2023)

Fri 06 Jan 2023, 22:48 | Tags: THz components, Lloyd-Hughes, 2023

Terahertz photoconductance dynamics of semiconductors from sub-nanosecond to millisecond timescales

E-OPTP

E. Butler-Caddle, N.E. Grant, S.L. Pain, J.D. Murphy, K.D.G.I. Jayawardena and J. Lloyd-Hughes
Appl. Phys. Lett. 122 012101 (Jan 2023)

Tue 03 Jan 2023, 17:17 | Tags: THz spectroscopy, perovskites, Lloyd-Hughes, 2023, ultrafast, highlight

Dephasing Dynamics across Different Local Vibrational Modes and Crystalline Environments

PFID

T.J. Keat , D. J. L. Coxon, M. Staniforth, M. W. Dale, V. G. Stavros, M. E. Newton, and J. Lloyd-Hughes
Phys. Rev. Lett. 129 237401 (Nov 2022)

Tue 29 Nov 2022, 18:45 | Tags: Lloyd-Hughes, 2022, ultrafast, highlight

Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams ("Editor's Pick")

Multi-pixel emitters

J. Deveikis and J. Lloyd-Hughes
Optics Express 30 43293 (Nov 2022)

Thu 10 Nov 2022, 13:00 | Tags: THz spectroscopy, THz components, Lloyd-Hughes, 2022

Zigzag HgTe Nanowires Modify the Electron–Phonon Interaction in Chirality-Refined Single-Walled Carbon Nanotubes

HgTe

Z. Hu, B. Breeze, R.J. Kashtiban, J. Sloan and J. Lloyd-Hughes
ACS Nano 16 6789 (Apr 2022)

Thu 07 Apr 2022, 22:37 | Tags: nanomaterials, photoluminescence, Lloyd-Hughes, 2022, ultrafast

Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

THz round robin

H. Hempel, T.J. Savenjie, M. Stolterfoht, J. Neu, M. Failla, V.C. Paingad, P. Kužel, E.J. Heilweil, J.A. Spies, M. Schleuning, J. Zhao, D. Friedrich, K. Schwarzburg, L.D.A. Siebbeles, P. Dörflinger, V. Dyakonov, R. Katoh, M.J. Hong, J.G. Labram, M. Monti, E. Butler-Caddle, J. Lloyd-Hughes, M.M. Taheri, J.B. Baxter, T.J. Magnanelli, S. Luo, J.M. Cardon, S. Ardo, T. Unold
Advanced Energy Materials 2102776 (Feb 2022)

Tue 01 Mar 2022, 11:13 | Tags: photoluminescence, perovskites, Lloyd-Hughes, 2022, ultrafast

A Review of the Terahertz Conductivity and Photoconductivity of Carbon Nanotubes and Heteronanotubes

Review on CNTs

M.G. Burdanova, A.P. Tsapenko, M.V. Kharlamova, E.I. Kauppinen, B.P. Gorshunov, J. Kono and J. Lloyd-Hughes
Advanced Optical Materials 2101042 (Sept 2021)

Thu 30 Sep 2021, 22:28 | Tags: THz spectroscopy, nanomaterials, Lloyd-Hughes, review, 2021

Intertube Excitonic Coupling in Nanotube Van der Waals Heterostructures

1D van der Waals hetereostructures

M.G. Burdanova, M. Liu, M. Staniforth, Y. Zheng, R. Xiang, S. Chiashi, A. Anisimov, E. I. Kauppinen, S. Maruyama and J. Lloyd-Hughes
Advanced Functional Materials 2104969 (Sept 2021)

Tue 21 Sep 2021, 20:29 | Tags: nanomaterials, Lloyd-Hughes, ultrafast, 2021

Precise and accurate control of the ellipticity of THz radiation using a photoconductive pixel array

Multi-pixel emitters

C.D.W. Mosley, J. Deveikis and J. Lloyd-Hughes
Appl. Phys. Lett. 119 121105 (Sep 2021)

Tue 21 Sep 2021, 12:00 | Tags: THz spectroscopy, THz components, Lloyd-Hughes, 2021

Linear and Helical Cesium Iodide Atomic Chains in Ultranarrow Single-Walled Carbon Nanotubes: Impact on Optical Properties

CsI atomic chains

R.J. Kashtiban, M.G. Burdanova, A. Vasylenko, J. Wynn, P.V.C. Medeiros, Q. Ramasse, A.J. Morris, D. Quigley, J. Lloyd-Hughes and J. Sloan
ACS Nano 15 13389 (Aug 2021)

Tue 10 Aug 2021, 07:47 | Tags: nanomaterials, photoluminescence, Lloyd-Hughes, 2021

The 2021 ultrafast spectroscopic probes of condensed matter roadmap

roadmap

J. Lloyd-Hughes, P.M. Oppeneer, T. Pereira dos Santos, A. Schleife, S. Meng, M.A. Sentef, M. Ruggenthaler, A. Rubio, I. Radu, M. Murnane, X. Shi, H. Kapteyn, B. Stadtmüller, K.M. Dani, F.H. da Jornada, E. Prinz, M. Aeschlimann, R.L. Milot, M. Burdanova, J. Boland, T. Cocker and F. Hegmann
J. Phys.: Cond. Matt. 33 353001 (July 2021)


Hot electron cooling in InSb probed by ultrafast time-resolved terahertz cyclotron resonance

InSb cyclotron

C.Q. Xia, M. Monti, J.L. Boland, L.M. Herz, J. Lloyd-Hughes, M.R. Filip and M.B. Johnston
Phys. Rev. B 103 245205 (June 2021)

Tue 29 Jun 2021, 09:37 | Tags: THz spectroscopy, Lloyd-Hughes, 2021

Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films

1D van der Waals hetereostructures

M.G. Burdanova, G.M. Katybab, R. Kashtiban, G.A. Komandin, E. Butler-Caddle, M. Staniforth, A.A. Mkrtchyan, D.V. Krasnikov, Y.G. Gladush, J.Sloan, A.G. Nasibulin and J. Lloyd-Hughes
Carbon 173 245 (Mar 2021)

Mon 01 Mar 2021, 00:00 | Tags: THz spectroscopy, THz components, nanomaterials, Lloyd-Hughes, 2021

Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility

Hot carrier temperatures

M. Monti, K.D.G.I. Jayawardena, E. Butler-Caddle, R.M.I. Bandara, J.M. Woolley, M. Staniforth, S.R.P. Silva and J. Lloyd-Hughes
Phys. Rev. B 102 245204 (Dec 2020) [ pdf ] [ ref ]

Thu 24 Dec 2020, 10:00 | Tags: THz spectroscopy, photoluminescence, perovskites, Lloyd-Hughes, 2020

An Ultrafast Shakedown Reveals the Energy Landscape, Relaxation Dynamics and Concentration of the N3VH0 Defect in Diamond

Ultrafast shakedownD.J.L. Coxon, M. Staniforth, B.G. Breeze, S.E. Greenough, J.P. Goss, M. Monti, J. Lloyd-Hughes, V.G. Stavros, and M.E. Newton
J. Phys. Chem. Lett. 11, 6677 (July 2020) [ pdf (with SI) ] [ ref ]



Fri 17 Jul 2020, 22:00 | Tags: nanomaterials, Lloyd-Hughes, 2020

Emergent Antipolar Phase in BiFeO3-La0.7Sr0.3MnO3 Superlattice

W. Dong, J.J.P. Peters, D. Rusu, M. Staniforth, A. Brunier, J. Lloyd-Hughes, A.M. Sanchez and M. Alexe
Nano Lett. 20 8, 6045 (July 2020) [ pdf ] [ ref ]

Emergent antipolar phase



Tue 14 Jul 2020, 21:05 | Tags: nanomaterials, Lloyd-Hughes, 2020

Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS2 Nanotubes with Coexisting Excitons and Highly Mobile Charges

M.G. Burdanova, R.J. Kashtiban, Y. Zheng, R. Xiang, S. Chiashi, J.M. Woolley, M. Staniforth, E. Sakamoto-Rablah, X. Xie, M. Broome, J. Sloan, A. Anisimov, E.I. Kauppinen, S. Maruyama and J. Lloyd-Hughes
Nano Lett. 20 5, 3560 (Apr 2020) [ free e-print ] [ preprint pdf ] [ ref ]

1D van der Waals hetereostructuresHeterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS2). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure’s equilibrium and ultrafast optoelectronics. Ultrafast pump–probe spectroscopy across the visible and terahertz frequency ranges identified that, in the MoS2 nanotubes, excitons coexisted with a prominent population of free charges. The electron mobility was comparable to that found in high-quality atomically thin crystals. The high mobility of the MoS2 nanotubes highlights the potential of 1D van der Waals heterostructures for nanoscale optoelectronic devices.




Landau polaritons in highly nonparabolic two-dimensional gases in the ultrastrong coupling regime

J. Keller, G. Scalari, F. Appugliese, S. Rajabali, M. Beck, J. Haase, C.A. Lehner, W. Wegscheider, M. Failla, M. Myronov, D.R. Leadley, J. Lloyd-Hughes, P. Nataf, and J. Faist
Physical Review B 101:075301 (Feb 2020) [ pdf ][ ref ]

Keller 2020We probe ultrastrong light-matter coupling between metallic terahertz metasurfaces and Landau-level transitions in high-mobility two-dimensional electron and hole gases. We utilize heavy-hole cyclotron resonances in strained Ge and electron cyclotron resonances in InSb quantum wells, both within highly nonparabolic bands, and compare our results to well-known parabolic AlGaAs/GaAs quantum well systems. Tuning the coupling strength of the system by two methods, lithographically and by optical pumping, we observe a behavior clearly deviating from the standard Hopfield model previously verified in cavity quantum electrodynamics: an opening of a lower polaritonic gap.



Mon 17 Feb 2020, 23:27 | Tags: THz spectroscopy, nanomaterials, Lloyd-Hughes, 2020

Approaching the Shockley-Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics

K.D.G.I. Jayawardena, R.M.I. Bandara, M. Monti, E. Butler-Caddle, T. Pichler, H. Shiozawa, Z. Wang, S. Jenatsch, S.J. Hinder, M.G. Masteghin, M. Patel, H.M. Thirimanne, W. Zhang, R.A. Sporea, J. Lloyd-Hughes and S. R. P. Silva
J. Mater. Chem. A 8 693 (Jan 2020) [ pdf ] [ ref ]

GABr paperThe performance of all solar cells is dictated by charge recombination. A closer to ideal recombination dynamics results in improved performances, with fill factors approaching the limits based on Shockley-Queisser analysis. It is well known that for emerging solar materials such as perovskites, there are several challenges that need to be overcome to achieve high fill factors, particularly for large area lead-tin mixed perovskite solar cells. Here we demonstrate a strategy towards achieving fill factors above 80% through post-treatment of a lead-tin mixed perovskite absorber with guanidinium bromide for devices with an active area of 0.43 cm2. This bromide post-treatment results in a more favourable band alignment at the anode and cathode interfaces, enabling better bipolar extraction. The resulting devices demonstrate an exceptional fill factor of 83%, approaching the Shockley–Queisser limit, resulting in a power conversion efficiency of 14.4% for large area devices.



Mon 06 Jan 2020, 14:07 | Tags: THz spectroscopy, photoluminescence, perovskites, Lloyd-Hughes, 2020

Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation

Y. Gladush, A. Mkrtchyan, D. Kopylova, A. Ivanenko, B. Nyushkov, S. Kobtsev, A. Kokhanovskiy, A. Khegai, M. Melkumov, M.G. Burdanova, M. Staniforth, J. Lloyd-Hughes and A.G. Nasibulin
Nano Letters 19 5836 (Aug 2019) [ pdf ] [ ref ]

Ionic liquid gated carbon nanotube saturable absorberMaterials with electrically tunable optical properties offer a wide range of opportunities for photonic applications. The optical properties of the single-walled carbon nanotubes (SWCNTs) can be significantly altered in the near infrared region by means of electrochemical doping. The states’ filling, which is responsible for the optical absorption suppression under doping, also alters the nonlinear optical response of the material. Here, for the first time, we report that the electrochemical doping can tailor the nonlinear optical absorption of SWCNT films and demonstrate its application to control pulsed fiber laser generation. With a pump-probe technique we show that under an applied voltage below 2 V the photo-bleaching of the material can be gradually reduced and even turned to photo-induced absorption. Furthermore, we integrated a carbon nanotube electrochemical cell on a side-polished fiber to tune the absorption saturation and implemented it into the fully polarization-maintaining fiber laser. We show that the pulse generation regime can be reversibly switched between femtosecond mode locking and microsecond Q-switching using different gate voltages. This approach paves the road towards carbon nanotube optical devices with tunable nonlinearity.

Fri 02 Aug 2019, 00:10 | Tags: nanomaterials, Lloyd-Hughes, 2019

Scalable interdigitated photoconductive emitters for the electrical modulation of terahertz beams with arbitrary linear polarization

C.D.W. Mosley, M. Staniforth, A. I. Hernandez Serrano, E. Pickwell-MacPherson and J. Lloyd-Hughes
AIP Advances 9, 045323 (Apr 2019) [ pdf ] [ ref ]

A multi-element interdigitated photoconductive emitter for broadband THz polarization rotation is proposed and experimentally verified. The device consists of separate pixels for the emission of horizontally and vertically polarized THz radiation. The broadband (0.3–5.0 THz) nature of the device is demonstrated, and the polarization angle of the generated far-field THz radiation is shown to be readily controlled by varying the relative bias voltage applied to the horizontally and vertically emitting pixels. The device is scalable in design, and with its simple method of polarization rotation it allows the modulation of the generated THz polarization at rates significantly faster than those achievable in ellipsometry systems based on mechanically rotating components.

Fri 26 Apr 2019, 19:08 | Tags: THz components, MacPherson, Lloyd-Hughes, 2019

Design and fabrication of 3-D printed conductive polymer structures for THz polarization control

A.I. Hernandez-Serrano, Q. Sun, E.G. Bishop, E.R. Griffiths, C.P. Purssel, S.J. Leigh, J. Lloyd-Hughes and E. Pickwell-MacPherson
Optics Express 27 8 11635 (April 2019) [ pdf ] [ ref ]

arturo2019.jpg

In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly.

Thu 11 Apr 2019, 16:40 | Tags: THz components, MacPherson, Lloyd-Hughes, 2019

Giant negative terahertz photoconductivity in controllably doped carbon nanotube networks

M.G. Burdanova, A.P. Tsapenko, D.A. Satco, R.J. Kashtiban, C.D.W. Mosley, M. Monti, M. Staniforth, J. Sloan, Y. Gladush, A.G. Nasibulin and J. Lloyd-Hughes
ACS Photonics 6 1058 (Mar 2019) [ preprint pdf ] [ supplemental info ] [ ref ]

Negative photoconductivity in carbon nanotubesA strong negative photoconductivity was identified in thin film networks of single-walled carbon nanotubes using optical pump, THz probe spectroscopy. The films were controllably doped, using either adsorption doping with different p-type dopant concentrations, or ambipolar doping using an ionic gate. While doping enhanced the THz conductivity and increased the momentum scattering rate, interband photoexcitation lowered the spectral weight and reduced the momentum scattering rate. This negative THz photoconductivity was observed for all doping levels, regardless of the chemical potential, and decayed within a few picoseconds. The strong many-body interactions inherent to these 1D conductors led to trion formation under photoexcitation, lowering the overall conductivity of the carbon nanotube network. The large amplitude of negative THz photoconductivity and the tunability of its recovery time with doping offer promise for spectrally wide-band ultrafast devices including THz detectors, polarizers and modulators.

Sun 17 Mar 2019, 07:40 | Tags: THz spectroscopy, nanomaterials, Lloyd-Hughes, 2019

Efficient Intraband Hot Carrier Relaxation in the Perovskite Semiconductor Cs1-xRbxSnI3 Mediated by Strong Electron-Phonon Coupling

M. Monti, S. Tao, M. Staniforth, A. Crocker, E. Griffin, A. Wijesekara, R.A. Hatton, and J. Lloyd-Hughes
J. Phys. Chem. C 122 20669 (Aug 2018) [ pdf ] [ ref ]

THz conductivity dynamics of GaAs and CsSni3The dynamic increase in THz photoconductivity resulting from energetic intraband relaxation was used to track the formation of highly mobile charges in thin films of the tin iodide perovskite Cs1-xRbxSnI3, with x=0 and x=0.1. Energy relaxation times were found to be around 500fs, comparable to those in the prototypical inorganic semiconductor GaAs. At low excess energies the efficient intraband energy relaxation in the lowest conduction and valence bands of Cs1-xRbxSnI3 can be understood within the context of the Fröhlich electron-phonon interaction, with a strong coupling strength. For higher excess energies the photoconductivity rise time lengthens in accordance with carrier injection into multiple bands, identified by quantitative first-principles bandstructure calculations and photoluminescence spectroscopy. The findings contribute to the development of design rules for photovoltaic devices capable of extracting hot carriers from perovskite semiconductors.

Tue 21 Aug 2018, 09:45 | Tags: THz spectroscopy, 2018, photoluminescence, perovskites, Lloyd-Hughes

Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in Situ Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites

Q. Sun, X. Liu, J. Cao, R.I. Stantchev, Y. Zhou, X. Chen, E.P.J. Parrott, J. Lloyd-Hughes, N. Zhao, and E. Pickwell-MacPherson
J. Phys. Chem. C 122 17552 (June 2018) [ pdf ] [ ref ]

Sun 2018

Terahertz (THz) thin-film total internal reflection (TF-TIR) spectroscopy is shown to have an enhanced sensitivity to the vibrational properties of thin films in comparison with standard THz transmission spectroscopy. This increased sensitivity was used to track photoinduced modifications to the structure of thin films of methylammonium (MA) lead halide, MAPbI3–xBrx (x = 0, 0.5, 1, and 3). Initially, illumination strengthened the phonon modes around 2 THz, associated with Pb–I stretch modes coupled to the MA ions, whereas the 1 THz twist modes of the inorganic octahedra did not alter in strength. Under longer term illumination, the 1 THz phonon modes of encapsulated films slowly reduced in strength, whereas in films exposed to moisture and oxygen, these phonons weaken more rapidly and blue-shift in frequency. The rapid monitoring of environmentally induced changes to the vibrational modes afforded by TF-TIR spectroscopy offers applications in the characterization and quality control of the perovskite thin-film solar cells and other thin-film semiconductors.

Mon 06 Aug 2018, 13:51 | Tags: THz spectroscopy, 2018, MacPherson, perovskites, Lloyd-Hughes

Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaics

K.P. Marshall, S. Tao, M. Walker, D.S. Cook, J. Lloyd-Hughes, S. Varagnolo, A. Wijesekara, D. Walker, R.I. Walton and R.A. Hatton
Materials Chemistry Frontiers 2:1515 (June 2018) [ pdf ] [ ref ]

marshall2018.gif

We show that films of the 3-dimensional perovskite Cs1−xRbxSnI3 can be prepared from room temperature N,N-dimethylformamide solutions of RbI, CsI and SnCl2 for x ≤ 0.5, and that for x ≤ 0.2 film stability is sufficient for utility as the light harvesting layer in inverted photovoltaic (PV) devices. Electronic absorption and photoluminescence spectroscopy measurements supported by computational simulation, show that increasing x increases the band gap, due to distortion of the lattice of SnI6 octahedra that occurs when Cs is substituted with Rb, although it also reduces the stability towards decomposition. When Cs0.8Rb0.2SnI3 perovskite is incorporated into the model inverted PV device structure; ITO|perovskite|C60|bathocuproine|Al, an ∼120 mV increase in open-circuit is achieved which is shown to correlate with an increase in perovskite ionisation potential. However, for this low Rb loading the increase in band gap is very small (∼30 meV) and so a significant increase in open circuit-voltage is achieved without reducing the range of wavelengths over which the perovskite can harvest light. The experimental findings presented are shown to agree well with the predictions of density functional theory (DFT) simulations of the stability and electronic structure, also performed as part of this study.

Wed 13 Jun 2018, 12:34 | Tags: 2018, photoluminescence, perovskites, Lloyd-Hughes

Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

D. Shao, P. Yotprayoonsak, V. Saunajoki, M. Ahlskog, J. Virtanen, V. Kangas, A. Volodin, C. Van Haesendonck, M. Burdanova, C. D. W. Mosley and J. Lloyd-Hughes
Nanotechnology 29 145203 (Feb 2018) [ pdf ] [ ref ]

Complex THz conductivity of a 130nm thick DWNT/xylan compositeWe have examined the conductive properties of a carbon nanotube (CNT) based thin film, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin Probe Force Microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S/cm. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

Tue 06 Feb 2018, 13:50 | Tags: THz spectroscopy, 2018, nanomaterials, Lloyd-Hughes

Tracking a hysteretic and disorder-broadened phase transition via the electromagnon response in improper ferroelectrics

C. D. W. Mosley, D. Prabhakaran and J. Lloyd-Hughes
J. Phys. D: Applied Physics 51 084002 (Jan 2018) [ pdf ][ ref ]

We demonstrate that Hysteresis in the electromagnon oscillator strength in CuZnOelectromagnons can be used to directly probe the nature of a phase transition between magnetically ordered phases in an improper ferroelectric. The antiferromagnetic/paraelectric to antiferromagnet/ferroelectric phase transition in Cu1-xZnxO (x = 0, 0.05) alloys was tracked via the electromagnon response using terahertz time-domain spectroscopy, on heating and cooling through the phase transition. The transition was found to exhibit thermal hysteresis, confirming its first-order nature, and to broaden under the influence of spin-disorder upon Zn substitution. The energy of the electromagnon increases upon alloying, as a result of the non-magnetic ions modifying the magnetic interactions that give rise to the multiferroic phase and electromagnons. We describe our findings in the context of recent theoretical work that examined improper ferroelectricity and electromagnons in CuO from phenomenological and first-principles approaches.

Wed 17 Jan 2018, 08:02 | Tags: THz spectroscopy, 2018, Lloyd-Hughes

Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization

C. D. W. Mosley, M. Failla, D. Prabhakaran and J. Lloyd-Hughes
Scientific Reports 7:12337 (Sept 2017) [ pdf ][ ref ]

WeRotatable terahertz polarisation introduce a polarization-resolved terahertz time-domain spectrometer with a broadband (0.3-2.5THz), rotatable THz polarization state, and which exhibits minimal change in the electric field amplitude and polarization state upon rotation. This was achieved by rotating an interdigitated photoconductive emitter, and by detecting the orthogonal components of the generated THz pulse via electro-optic sampling. The high precision (<0.1°) and accuracy (<1.0°) of this approach is beneficial for the study of anisotropic materials without rotating the sample, which can be impractical, for instance for samples held in a cryostat. The versatility of this method was demonstrated by studying the anisotropic THz optical properties of uniaxial and biaxial oxide crystals. For uniaxial ZnO and LaAlO3, which have minimal THz absorption across the measurement bandwidth, the orientations of the eigenmodes of propagation were conveniently identified as the orientation angles that produced a transmitted THz pulse with zero ellipticity, and the birefringence was quantified. In CuO, a multiferroic with improper ferroelectricity, the anisotropic THz absorption created by an electromagnon was investigated, mapping its selection rule precisely. For this biaxial crystal, which has phonon and electromagnon absorption, the polarization eigenvectors exhibited chromatic dispersion, as a result of the monoclinic crystal structure and the frequency-dependent complex refractive index.

Wed 27 Sep 2017, 12:22 | Tags: THz spectroscopy, THz components, 2017, Lloyd-Hughes

Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E. M. Choi and J. L. MacManus-Driscoll
Nano Lett. 17:2506 (Mar 2017) [ pdf ][ ref ]

Wenl2017web.png show that colossal magnetoresistance persists up to THz frequencies, in manganite nanocomposites and thin films. At the metal-insulator transition the THz conductivity of the nanocolumn film was dramatically enhanced by the application of a magnetic field, creating a non-Drude conductivity that increased with frequency. Surprisingly, the observed colossal THz magnetoresistance is large for ac motion on nanometre length scales, even when the dc magnetoresistance on macroscopic length scales is negligible.

Tue 12 Sep 2017, 21:00 | Tags: THz spectroscopy, 2017, Lloyd-Hughes

Papers from 2016 (JLH only)

Terahertz quantum Hall effect for spin-split heavy-hole gases in strained Ge quantum wellsLink opens in a new window
table of content figure M. Failla, J. Keller, G. Scalari, C. Maissen, J. Faist, C. Reichl, W. Wegscheider, O. J. Newell, D. R. Leadley, M. Myronov, J. Lloyd-Hughes
New J. Phys. 18:113036 (Nov 2016) [ pdfLink opens in a new window ][ ref ]
Spin-split heavy-hole gases in strained germanium quantum wells were characterized by polarisation-resolved terahertz time-domain spectroscopy. Effective masses, carrier densities, g-factors, transport lifetimes, mobilities and Rashba spin-splitting energies were evaluated, giving quantitative insights into the influence of strain. The Rashba coefficient was found to lower for samples with higher biaxial compressive strain, while heavy-hole mobilities were enhanced to over 1.5x106cm2V−1s−1 at 3 K. This high mobility enabled the observation of the optical quantum Hall effect at terahertz frequencies for spin-split two-dimensional heavy-holes, evidenced as plateaux in the transverse magnetoconductivity at even and odd filling factors.

Tue 01 Nov 2016, 13:00 | Tags: THz spectroscopy, nanomaterials, Lloyd-Hughes, 2016

Papers from 2015 (JLH only)

Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells
table of content figure M. Failla, M. Myronov, C. Morrison, D. R. Leadley, and J. Lloyd-Hughes
Physical Review B, 92:045303 (July 2015) [ pdf ][ supplemental info ][ ref ]
The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

Interfacial and bulk polaron masses in Zn1-xMgxO/ZnO heterostructures examined by terahertz time-domain cyclotron spectroscopy
table of content figure J. Lloyd-Hughes, M. Failla, J. Ye, S.P.P. Jones, K.L. Teo, and C. Jagadish
Appl. Phys. Lett. 106:202103 (May 2015) [ pdf ][ ref ]
The cyclotron resonance of polarons in Zn1-xMgxO/ZnO heterostructures (with 0.15<x<0.22) was studied by terahertz time-domain spectroscopy. Low-temperature magnetoconductivity spectra of the 2D electron gas at the Zn1-xMgxO/ZnO interface determined the polaron density, mass, and scattering rate. The cyclotron mass of 2D polarons was found to increase significantly with magnetic field B from 0.24me at B=2T to 0.37me at B=7.5T. A nonlinear cyclotron frequency with B was also observed for 3D polarons in ZnO. The findings are discussed in the context of polaron mass renormalization driven by the electron-LO-phonon and electron-acoustic phonon interactions.

Structural, optical and vibrational properties of self-assembled Pbn+1(Ti1-xFex)nO3n+1-δ Ruddlesden-Popper superstructures
table of content figure K. I. Doig, J. J. P. Peters, S. Nawaz, D. Walker, M. Walker, M. R. Lees, R. Beanland, A. M. Sanchez, C. F. McConville, V. R. Palkar, J. Lloyd-Hughes
Scientific Reports, 5:7719 (Jan 2015) [ pdf ][ Supp. Info. ][ ref ]
Bulk crystals and thin films of PbTi1−xFexO3−δ (PTFO) are multiferroic, exhibiting ferroelectricity and ferromagnetism at room temperature. Here we report that the Ruddlesden-Popper phase Pbn+1(Ti1-xFex)nO3n+1-δ forms spontaneously during pulsed laser deposition of PTFO on LaAlO3 substrates. High-resolution transmission electron microscopy, x-ray diffraction and x-ray photoemission spectroscopy were utilised to perform a structural and compositional analysis, demonstrating that n~8 and x~0.5. The complex dielectric function of the films was determined from far-infrared to ultraviolet energies using a combination of terahertz time-domain spectroscopy, Fourier transform spectroscopy, and spectroscopic ellipsometry. The simultaneous Raman and infrared activity of phonon modes and the observation of second harmonic generation establishes a non-centrosymmetric point group for Pbn+1(Ti0.5Fe0.5)nO3n+1−δ, a prerequisite for (but not proof of) ferroelectricity. No evidence of macroscopic ferromagnetism was found in SQUID magnetometry. The ultrafast optical response exhibited coherent magnon oscillations compatible with local magnetic order, and additionally was used to study photocarrier cooling on picosecond timescales. An optical gap smaller than that of BiFeO3 and long photocarrier lifetimes may make this system interesting as a ferroelectric photovoltaic.

Wed 03 Jun 2015, 09:45 | Tags: THz spectroscopy, Lloyd-Hughes

Papers from 2014 (JLH only)

Terahertz spectroscopy of quantum 2D electron systems
table of content figure J. Lloyd-Hughes
J. Phys. D: Appl. Phys., 47:374006 (Sept 2014) [ pdf ][ ref ]
Terahertz time-domain spectroscopy permits the coherent motion of charges to be examined in a diverse range of two-dimensional semiconductor heterostructures. Studies of the THz conductivity and magnetoconductivity of two-dimensional quantum systems are reviewed, including cyclotron resonance spectroscopy and the transverse conductivity in the Hall and quantum Hall regimes. Experiments are described that demonstrate quantum phenomena at THz frequencies, principally coherent control and enhanced light–matter coupling in electromagnetic cavities.

Influence of nonmagnetic Zn substitution on the lattice and magnetoelectric dynamical properties of the multiferroic material CuO
table of content figure S.P.P. Jones, N.C. Wurz, M. Failla, D. Prabhakaran, C.F. McConville, J. Lloyd-Hughes
Phys. Rev. B, 90:064405 (Aug 2014) [ pdf ][ ref ]
Electromagnons were observed in the high-temperature multiferroic CuO even after Zn substitution disturbed the spin structure. The results demonstrate that electromagnons and dynamic magnetoelectric coupling can be maintained in disordered spin systems. Further, the dynamic lattice response of CuZnO was investigated by Raman and Fourier-transform spectroscopy, and was used to show strong spin-phonon coupling in both the antiferromagnetic low-temperature phase and the intermediate-temperature multiferroic phase.

High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange
table of content figure S.P.P. Jones, S.M. Gaw, K.I. Doig, D. Prabhakaran, E.M. Hétroy Wheeler, A.T. Boothroyd, J. Lloyd-Hughes
Nat. Commun., 5:3787 (Apr 2014) [ pdf with Supp. Info. ][ ref ]
Magnetically induced ferroelectric multiferroics present an exciting new paradigm in the design of multifunctional materials, by intimately coupling magnetic and polar order. Magnetoelectricity creates a novel quasiparticle excitation - the electromagnon - at terahertz frequencies, with spectral signatures that unveil important spin interactions. To date, electromagnons have been discovered at low temperature (<70K) and predominantly in rare-earth compounds such as RMnO3. Here we demonstrate using terahertz time-domain spectroscopy that intersublattice exchange in the improper multiferroic cupric oxide (CuO) creates electromagnons at substantially elevated temperatures (213-230K). Dynamic magnetoelectric coupling can therefore be achieved in materials, such as CuO, that exhibit minimal static cross-coupling. The electromagnon strength and energy track the static polarization, highlighting the importance of the underlying cycloidal spin structure. Polarized neutron scattering and terahertz spectroscopy identify a magnon in the antiferromagnetic ground state, with a temperature dependence that suggests a significant role for biquadratic exchange.

Modifying the polarization state of terahertz radiation using anisotropic twin-domains in LaAlO3
table of content figure J. Lloyd-Hughes, S.P.P. Jones, E. Castro-Camus, K.I. Doig, J.L. Macmanus-Driscoll
Optics Lett., 39 1121 (Mar 2014) [ pdf ][ ref ]
Polarization-resolved terahertz (THz) time-domain spectroscopy was utilized to examine the complex refractive index of lanthanum aluminate (LaAlO3), a rhombohedrally distorted perovskite that exhibits crystallographic twin domains. The uniaxial anisotropy of the refractive index was quantified. The ellipticity of THz radiation pulses after transmission through single domains indicated that LaAlO3 can be used as a quarter- or half-wave plate. The effective anisotropy of [001]-oriented LaAlO3 was found to be reduced when the material exhibited multiple, narrow twin domains.

Wed 01 Jan 2014, 00:00 | Tags: THz spectroscopy, Lloyd-Hughes

Older papers (JLH only)