Core modules
Computational Fluid Dynamics
The aim of this module is to provide a fundamental understanding of important numerical techniques in computational fluid dynamics and to establish a critical view on the use of CFD as part of the design process. This module offers an increased depth and range of specialist knowledge in computational fluid dynamics required by IMechE.
Renewable Energy
The module is intended to present and assess some of the important renewable energy technologies and give some sense of the engineering design and development of some of these technologies. Starting with a brief outline of existing and proposed renewable energy systems, the course adopts an active solution-seeking approach, assessing these technologies against economic, engineering and other criteria.
Two of the most promising technologies, wind power, and solar energy are treated in some depth as an example of optimisation in mechanical and electrical engineering design. Other technologies studied include geothermal, biomass, ocean and hydro power.
Dynamics of 3D Mechanical Systems
This module aims to deliver an overview of important techniques of engineering dynamics, and providing insight into advanced knowledge in kinematics, kinetics, and vibrations. The dynamics of engineering systems important to modern engineering applications such as spatial mechanisms and robots are examined. The complexities of kinematic and kinetic analysis of fully 3D motion will provide an appropriate challenge for the Master's level course.
Heat Transfer Theory and Design
Heat Transfer Theory and Design provides a knowledge of heat transfer that is of vital importance in many industrial sectors from process industries, through vehicles, etc., power plant, to building technology.
Mechanical Engineering Group Design
The design projects aim to give you the experience of working within a team, and parallels the way engineers often work in industry. You will integrate your knowledge and understanding in order to specify and solve a substantial Mechanical Engineering problem (or user need), through the creation and development of a product, process or system. The project also allows you to develop your understanding of project management, time management, ethics, sustainability, health and safety, risk, regulatory requirements, and intellectual property rights. You will also develop effective communication and leadership skills.
Research Methods and Professional Skills
The module aims to equip you with the research skills necessary to support masters’ level learning in engineering and facilitate engagement with the individual project through equipping you with a broad research skill set. In addition, this module will provide you with the professional and team skills to support the course and your career in engineering.
Individual Project
This module gives you the opportunity to demonstrate that you have independently contributed primary data and/or a new analysis of secondary data, within your chosen advanced research topic.
Projects will be highly variable in nature to reflect the range of topics within the programmes of study but all will provide you with an opportunity to achieve the learning outcomes. Thus, projects may entail experimentation, modelling, analysis and literary survey skills to develop advanced skills in the discovery and occasionally creation of new knowledge. The module also offers the chance for you to pursue curiosity driven work guided by an academic supervisor.
Optional modules
Optional modules can vary from year to year. Example optional modules may include:
- Biomechanics
- Advanced Robotics
- Design for Sustainability
- Batteries and Fuel Cells
- Mathematical and Computer Modelling
- Precision Engineering and Microsystems
- Automobile Systems, Dynamics and Control