Latest Publications
Mike Tildesley publications
When should lockdown be implemented? Devising cost-effective strategies for managing epidemics amid vaccine uncertainty
Doyle, Nathan, Cumming, Fergus, Thompson, Robin N. and Tildesley, Michael J.
We combine features of existing models to develop a novel model for vectorial capacity that considers both climate and vector control. This model considers how vector control tools affect vectors at each stage of their feeding cycle, and incorporates host availability and preference. Applying this model to arboviruses of veterinary importance in Europe, we show that African horse sickness virus (AHSV) has a higher peak predicted vectorial capacity than bluetongue virus (BTV), Schmallenberg virus (SBV), and epizootic haemorrhagic disease virus (EHDV). However, AHSV has a shorter average infectious period due to high mortality; therefore, the overall basic reproduction number of AHSV is similar to BTV. Overall, this model can be used to consider both climate and vector control interventions either currently utilised or for potential use in an outbreak, and could help guide policy makers seeking to mitigate the impact of climate change on disease control. PLoS Computational Biology. July 2024
Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission
Emma L Fairbanks, Janet M Daly and Michael J TildesleyWe combine features of existing models to develop a novel model for vectorial capacity that considers both climate and vector control. This model considers how vector control tools affect vectors at each stage of their feeding cycle, and incorporates host availability and preference. Applying this model to arboviruses of veterinary importance in Europe, we show that African horse sickness virus (AHSV) has a higher peak predicted vectorial capacity than bluetongue virus (BTV), Schmallenberg virus (SBV), and epizootic haemorrhagic disease virus (EHDV). However, AHSV has a shorter average infectious period due to high mortality; therefore, the overall basic reproduction number of AHSV is similar to BTV. Overall, this model can be used to consider both climate and vector control interventions either currently utilised or for potential use in an outbreak, and could help guide policy makers seeking to mitigate the impact of climate change on disease control. Viruses. July 2024