Skip to main content Skip to navigation

Latest Publications

Show all news items

Molecular motor tug-of-war regulates elongasome cell wall synthesis dynamics in Bacillus subtilis

Stuart Middlemiss, Matthieu Blandenet, David M. Roberts, Andrew McMahon, James Grimshaw, Joshua M. Edwards, Zikai Sun, Kevin D. Whitley, Thierry Blu, Henrik Strahl & Seamus Holden

Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. Our results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.

Nature Communications. June 2024