Skip to main content Skip to navigation

Latest Publications

Show all news items

Knockout of fatty acid elongase1 homeoalleles in amphidiploid Brassica juncea leads to undetectable erucic acid in seed oil

Nelesh Patra , Guy C. Barker , Mrinal K. Maiti

Indian mustard (Brassica juncea L.) seed oil offers valuable dietary benefits due to a balanced ratio of human essential fatty acids, the traditional high oil-yielding varieties contain an elevated level of erucic acid (EA, C22:1) associated with adverse health effects. Therefore, developing low erucic acid (LEA) mustard cultivars is crucial for broader utilization and consumer safety. In this study, CRISPR/Cas9 genome editing tool was employed to disrupt the fatty acid elongase1 (FAE1) gene that encodes a key enzyme in EA biosynthesis in two high erucic acid (HEA) B. juncea cultivars, PCR7 (∼39% EA) and JD6 (∼45% EA). Our findings underscore the effectiveness of CRISPR/Cas9 technology for editing B. juncea genome, developing plant lines producing LEA seed oil with improved nutritional quality and broadening the utility of this important oilseed crop for food and non-food applications.

Plant Physiology & Biochemistry. February 2025