Skip to main content Skip to navigation

Sharmila and Animesh Publish new paper on spacetime fluctuations

Extracting electromagnetic signatures of spacetime fluctuations: Quantum principles suggest fluctuations in the fabric of spacetime when reconciling gravity at the low energy limit. In this paper, we present a formalism to discern the effects of these fluctuations on electromagnetic radiation. The formalism works via the measurement of electromagnetic field correlations while allowing a clear assessment of the assumptions involved. As an application of the formalism, we present a model of spacetime fluctuations that appear as random fluctuations of the refractive index of the vacuum in single, and two co-located Michelson interferometers. We compare an interferometric signal predicted using this model to experimental data from the Holometer and aLIGO. We show that if the signal manifests at a frequency at which the interferometers are sensitive, the strength and scale of possible spacetime fluctuations can be constrained. The bounds, thus obtained, on the strength and scale of the spacetime fluctuations, are also shown to be more stringent than the bounds obtained previously using astronomical observation at optical frequencies. The formalism enables us to evaluate proposed experiments such as QUEST for constraining quantum spacetime fluctuations and to design new ones.

Extracting electromagnetic signatures of spacetime fluctuations

B. Sharmila, Sander M. Vermeulen and Animesh Datta

Class. Quantum Grav. 41, 075003 (2024).


arXiv:2306.17706 [gr-qc]