Skip to main content Skip to navigation

Latest Publications

Select tags to filter on

Cutaneous leishmaniasis in British troops following jungle training in Belize: Cumulative incidence and potential risk practices

Rawlings, Ngwa Niba, Bailey, Mark, Craig, Peter, Courtenay, Orin

British soldiers undergoing jungle training in Belize typically experience a relatively low risk of developing cutaneous leishmaniasis. However, an uncharacteristically large outbreak of cutaneous leishmaniasis occurred in 2022. This study aimed to determine the cumulative incidence of the disease and highlight potential shortcomings in personal protective measures to mitigate exposure to sand fly vector bites. A retrospective analysis was conducted on medical records of cutaneous leishmaniasis cases between 2005 and 2022, as well as on questionnaire responses regarding personal protective measures administered to cutaneous leishmaniasis cases in 2022. The reasons behind the unusually high numbers of cutaneous leishmaniasis cases and cumulative incidence in 2022 remain unclear, emphasising the need to improve personal protective measures provision and implement a comprehensive health education programme for troops undergoing jungle training in Belize.

Parasite Epidemiology and Control. November 2024


Emergence of synchronised growth oscillations in filamentous fungi

Praneet Prakash, Xue Jiang , Luke Richards, Zoe Schofield, Patrick Schafer Marco Polin, Orkun S. Soyer & Munehiro Asally

Many species of soil fungi grow in the form of branched networks that enable long-range communication and mass flow of nutrient. While there have been investigations on the branching of the fungal networks, their long-term growth dynamics in space and time is still not very well understood. In this study, we monitor the spatio-temporal growth dynamics of the plant-promoting filamentous fungus Serendipita indica for several days in a controlled environment within a microfluidic chamber. We find that S. indica cells display synchronised growth oscillations with the onset of sporulation and at a period of 3 hours. Quantifying this experimental synchronisation of oscillatory dynamics, we show that the synchronisation can be recapitulated by the nearest neighbour Kuramoto model with a millimetre-scale cell-cell coupling.

Royal Society Interface. October 2024


Complement-mediated killing of Escherichia coli by mechanical destabilization of the cell envelope

Georgina Benn, Christian Bortolini, David M Roberts, Alice L B Pyne, Seamus Holden, Bart W Hoogenboom

Complement proteins eliminate Gram-negative bacteria in the blood via the formation of membrane attack complex (MAC) pores in the outer membrane. However, it remains unclear how outer membrane poration leads to inner membrane permeation and cell lysis. Using atomic force microscopy (AFM) on living Escherichia coli (E. coli), we probed MAC-induced changes in the cell envelope and correlated these with subsequent cell death. We conclude that bacterial cell lysis is only an indirect effect of MAC formation; outer membrane poration leads to mechanical destabilization of the cell envelope, reducing its ability to contain the turgor pressure, leading to inner membrane permeation and cell death.

EMBO Journal. October 2024

Mon 11 Nov 2024, 07:46 | Tags: Microbiology & Infectious Disease HDC

Ammonia leakage can underpin nitrogen-sharing among soil microorganisms.

Luke Richards, Kelsey Cremin, Mary Coates, Finley Vigor, Patrick Schäfer, and Orkun S Soyer

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. Our findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.

ISME Journal. September 2024


A retrospective assessment of forecasting the peak of the SARS-CoV-2 Omicron BA.1 wave in England

Keeling, Matthew James and Dyson, Louise

We discuss the invasion of the Omicron BA.1 variant into England as a paradigm for real-time model fitting and projection. Here we use a mixture of simple SIR-type models, analysis of the early data and a more complex age-structure model fit to the outbreak to understand the dynamics. In particular, we highlight that early data shows that the invading Omicron variant had a substantial growth advantage over the resident Delta variant. However, early data does not allow us to reliably infer other key epidemiological parameters - such as generation time and severity - which influence the expected peak hospital numbers. With more complete epidemic data from January 2022 are we able to capture the true scale of the epidemic in terms of both infections and hospital admissions, driven by different infection characteristics of Omicron compared to Delta and a substantial shift in estimated precautionary behaviour during December. This work highlights the challenges of real time forecasting, in a rapidly changing environment with limited information on the variant’s epidemiological characteristics.

PLoS Computational Biology. September 2024

Mon 21 Oct 2024, 08:34 | Tags: Microbiology & Infectious Disease

A Pan Plasmodium lateral flow recombinase polymerase amplification assay for monitoring malaria parasites in vectors and human populations

Matthew Higgins, Mojca Kristan, Emma L. Collins, Louisa A. Messenger, Jamille G. Dombrowski, Leen N. Vanheer, Debbie Nolder, Christopher J. Drakeley, William Stone, Almahamoudou Mahamar, Teun Bousema, Michael Delves, Janvier Bandibabone, Sévérin N’Do, Chimanuka Bantuzeko, Bertin Zawadi, Thomas Walker, Colin J. Sutherland, Claudio R. F. Marinho, Mary M. Cameron, Taane G. Clark & Susana Campino

Malaria caused by neglected Plasmodium parasites is often underestimated due to the lack of rapid diagnostic tools that can accurately detect these species. Here, we present a Pan Plasmodium recombinase polymerase amplification lateral flow (RPA–LF) assay, capable of detecting all six human infecting Plasmodium species in low resource settings.. When combined with crude nucleic acid extraction, the assay can serve as a point-of-need tool for molecular xenomonitoring. This utility was demonstrated by screening laboratory-reared Anopheles stephensi mosquitoes fed with Plasmodium-infected blood, as well as field samples of An. funestus s.l. and An. gambiae s.l. collected from central Africa. Overall, our proof-of-concept Pan Plasmodium diagnostic tool has the potential to be applied for clinical and xenomonitoring field surveillance, and after further evaluation, could become an essential tool to assist malaria control and elimination.

Scientific Reports. August 2024

Thu 03 Oct 2024, 08:41 | Tags: Microbiology & Infectious Disease

Older news