Skip to main content

M P Allen Publications

Available at ResearcherID:

2017

[a — ambler.m:2017.a]
Michael Ambler, Bart Vorselaars, Michael P. Allen and David Quigley. Solid-liquid interfacial free energy of ice 1h, ice 1c and ice 0 within a mono-atomic model of water via the capillary wave method. J. Chem. Phys., 146, 074701, 2017. ( doi:10.1063/1.4975776)
[b — humpert.a:2017.a]
Anja Humpert, Samuel F. Brown and Michael P. Allen. Molecular simulations of entangled defect structures around nanoparticles in nematic liquid crystals. Liquid Crystals, 45, 59–69, 2018. ( doi:10.1080/02678292.2017.1295478 open access)
[c — allen.mp:2017.a]
Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liquids, Second Edition, 640pp (Oxford University Press, June 2017). ( Paperback, ISBN 9780198803201 , hardback, ISBN 9780198803195).
[d — rutter.go:2017.a]
Gil O. Rutter, Aaron H. Brown, David Quigley, Tiffany R. Walsh and Michael P. Allen. Emergence of order in self-assembly of the intrinsically disordered biomineralisation peptide n16N. Mol. Simul., 44, 463–469, 2018. ( doi:10.1080/08927022.2017.1405158 open access)

2016

[a — allen.mp:2016.a]
Michael P. Allen. Density functional theory for chiral nematic liquid crystals. Mol. Phys., 114, 2574–2579, 2016. ( doi:10.1080/00268976.2016.1168532)
[b — humpert.a:2016.a]
Anja Humpert, Andrew J. Masters and Michael P. Allen. Orientational dynamics in nematic liquid crystals. A coarse-grained simulation study. Euro. Phys. J. Spec. Topics, 225, 1723–1732, 2016. ( doi:10.1140/epjst/e2016-60118-1 and open access)

2015

[a — humpert.a:2015.a]
Anja Humpert and Michael P. Allen. Propagating director bend fluctuations in nematic liquid crystals. Phys. Rev. Lett., 114, 028301/1–5, 2015. ( doi:10.1103/PhysRevLett.114.028301)
[b — ruzicka.s:2015.a]
Stepan Ruzicka and Michael P. Allen. Monte Carlo Simulation of Kinetically Slowed Down Phase Separation. Euro. Phys. J. E, 38, 68/1–12, 2015. ( doi:10.1140/epje/i2015-15068-5 open access.)
[c — humpert.a:2015.b]
Anja Humpert and Michael P. Allen. Elastic constants and dynamics in nematic liquid crystals. Mol. Phys., 113, 2680–2692, 2015. ( doi:10.1080/00268976.2015.1067730)
[d — ruzicka.s:2015.b]
Stepan Ruzicka and Michael P. Allen. Monodisperse clusters in charged attractive colloids: linear renormalization of repulsion. J. Chem. Theor. Comput., 11, 3811–3817, 2015. ( doi:10.1021/ct501067t open access.)
[e — rutter.go:2015.a]
Gil O. Rutter, Aaron H. Brown, David Quigley, Tiffany R. Walsh and Michael P. Allen. Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Phys. Chem. Chem. Phys., 17, 31741–31749, 2015. ( doi:10.1039/c5cp05652g)
[f — ilnytskyi.jm:2015.a]
Jaroslav M. Ilnytskyi, Marina Saphiannikova, Dieter Neher and Michael P. Allen. Computer Simulation of Side-Chain Liquid Crystal Polymer Melts and Elastomers. Chapter 4, pp 93–129 in Liquid Crystalline Polymers, Eds: Vijay K. Thakur and Michael R. Kessler, Springer International, 2015. ( doi:10.1007/978-3-319-22894-5_4)

2014

[a — ruzicka.s:2014.a]
Stepan Ruzicka and Michael P. Allen. Collective translational and rotational Monte Carlo moves for attractive particles. Phys. Rev. E, 89, 033307/1–19, 2014. ( doi:10.1103/PhysRevE.89.033307)
[b — ruzicka.s:2014.b]
Stepan Ruzicka and Michael P. Allen. Collective translational and rotational Monte Carlo move for general pairwise interaction. Phys. Rev. E, 90, 033302/1–10, 2014. ( doi:10.1103/PhysRevE.90.033302)

2013

[a — allehyani.ih:2013.a]
Ibrahim H. Al-Lehyani, John M. A. Grime, Matthew Bano, Kim McKelvey, and Michael P. Allen. Coarse-grained simulation of transmembrane peptides in the gel phase. J. Comp. Phys., 238, 97–105, 2013. ( doi:10.1016/j.jcp.2012.12.014)
[b — allen.mp:2013.a]
Michael P. Allen and David Quigley. Some comments on Monte Carlo and molecular dynamics methods. Molec. Phys., 111, 3442–3447, 2013. ( doi: 10.1080/00268976.2013.817623)
[c — cosseddu.sm:2013.a]
Salvatore M. Cosseddu, Igor A. Khovanov, Michael P. Allen, P. Mark Rodger, Dmitri G. Luchinsky, and Peter V. E. McClintock. Dynamics of ions in the selectivity filter of the KcsA channel. Euro. Phys. J. Spec. Top., 222, 2595–2605, 2013. ( doi: 10.1140/epjst/e2013-02040-9)

2012

[a — swetnam.ad:2012.a]
Adam D. Swetnam, Charles Brett, and Michael P. Allen. Phase diagrams of knotted and unknotted ring polymers. Phys. Rev. E, 85, 031804/1–11, 2012. ( doi:10.1103/PhysRevE.85.031804)
[b — ruzicka.s:2012.a]
Stepan Ruzicka, David Quigley, and Michael P. Allen. Folding Kinetics of a Polymer. Phys. Chem. Chem. Phys., 14, 6044–6053, 2012. ( doi:10.1039/C2CP00051B)
[c — swetnam.ad:2012.b]
Adam D. Swetnam, and Michael P. Allen. Selective adsorption of lattice peptides on patterned surfaces. Phys. Rev. E, 85, 062901/1–4, 2012. ( doi:10.1103/PhysRevE.85.062901)
[d — swetnam.ad:2012.c]
Adam D. Swetnam, and Michael P. Allen. Studying the Adsorption of Polymers and Biomolecules on Surfaces Using Enhanced Sampling Methods. MRS Online Library, 1470, xx02–06, 2012. ( doi:10.1557/opl.2012.1203)
[e — allen.mp:2012.a]
Michael P. Allen, and Adam D. Swetnam. Wang-Landau Simulations of Adsorbed and Confined Lattice Polymers. Physics Procedia, 34, 6–13, 2012. ( doi:10.1016/j.phpro.2012.05.002)
[f — ilnytskyi.jm:2012.a]
Jaroslav M. Ilnytskyi, Marina Saphiannikova, Dieter Neher, and Michael P. Allen, Modelling elasticity and memory effects in liquid crystalline elastomer by molecular dynamics simulations. Soft Matter, 8, 11123–11134, 2012. ( doi:10.1039/C2SM26499D)

2011

[a — swetnam.ad:2011.a]
Adam D. Swetnam, and Michael P. Allen. Improving the Wang-Landau algorithm for polymers and proteins. J. Comput. Chem., 32, 816–821, 2011. ( doi:10.1002/jcc.21660)

2010

[a — obrien.pac:2010.a]
P. A. C. O'Brien, M. P. Allen, D. L. Cheung, M. Dennison and A. J. Masters. Elastic constants of hard thick platelets by Monte Carlo simulation and virial expansion. Soft Matter, 7, 153-162, 2010. ( doi:10.1039/c0sm00541j)

2009

[a — allen.mp:2009.a]
Michael P. Allen. Molecular simulation methods for soft matter. In Modeling and simulation of new materials, Tenth Granada Lectures (eds: J. Marro, P. L. Garrido and P. I. Hurtado) ISBN 978-0-7354-0624-7, AIP Conference Proceedings, 1091, 1–43, 2009. ( doi:10.1063/1.3082281)
[b — swetnam.ad:2009.a]
Adam D. Swetnam, and Michael P. Allen. Improved simulations of lattice peptide adsorption. Phys. Chem. Chem. Phys., 11, 2046–2055, 2009. ( doi:10.1039/b818067a)
[c — dennison.m:2009.a]
M. Dennison, A. J. Masters, D. L. Cheung, and Michael P. Allen. Calculation of direct correlation function for hard particles using a virial expansion. Molec. Phys., 107, 375–382, 2009. ( doi:10.1080/00268970902784934)

2008

[a — tupitsyna.ai:2008.a]
A. I. Tupitsyna, A. A. Darinskii, I. Emri, and Michael P. Allen. Computer simulation of anisotropic polymer brushes. Soft Matter, 4, 108–121, 2008. ( doi:10.1039/b711649g)
[b — cheung.dl:2008.a]
D. L. Cheung, L. Anton, M. P. Allen, and A. J. Masters. Structure of molecular liquids: Hard rod-disk mixtures. Phys. Rev. E, 77, 011202/1–8, 2008. ( doi:10.1103/PhysRevE.77.011202)
[c — cheung.dl:2008.b]
D. L. Cheung and M. P. Allen. Forces between cylindrical nanoparticles in a liquid crystal. Langmuir, 24, 1411–1417, 2008. ( doi:10.1021/la702348c)
[d — cheung.dl:2008.c]
D. L. Cheung, L. Anton, M. P. Allen, and A. J. Masters. Computer simulation of liquids and liquid crystals. Comput. Phys. Commun., 179, 61–65, 2008. ( doi:10.1016/j.cpc.2008.01.029)
[e — smiatek.j:2008.a]
Jens Smiatek, Michael P. Allen, and Friederike Schmid. Tunable-slip boundaries for coarse-grained simulations of fluid flow. Euro. Phys. J. E, 26, 115–122, 2008. ( doi:10.1140/epje/i2007-10311-4)
[f — cheung.dl:2008.d]
D. L. Cheung and Michael P. Allen. Effect of substrate geometry on liquid-crystal-mediated nanocylinder-substrate interactions. J. Chem. Phys., 129, 114706/1-7, 2008. ( doi:10.1063/1.2977968)
[g — cheung.dl:2008.e]
D. L. Cheung, L. Anton, Michael P. Allen, A. J. Masters, J. Phillips and M. Schmidt. Structure and stability of isotropic states of hard platelet fluids. Phys. Rev. E., 78, 041201/1-13, 2008. ( doi:10.1103/PhysRevE.78.041201)
[h — obrien.pa:2008.a]
P. A. O'Brien, M. P. Allen, D. L. Cheung, M. Dennison and A. J. Masters. Elastic constants of hard thin platelets by Monte Carlo simulation and virial expansion. Phys. Rev. E., 78, 051705/1-7, 2008. ( doi:10.1103/PhysRevE.78.051705)

2007

[a — allen.mp:2007.a]
Michael P. Allen and Friederike Schmid. A thermostat for molecular dynamics of complex fluids. Molec. Simul., 33, 21–26, 2007. ( doi:10.1080/08927020601052856)
[b — allen.mp:2007.b]
Michael P. Allen. Educational aspects of molecular simulation. Molec. Phys., 105, 157–166, 2007. ( doi:10.1080/00268970601138721)
[c — cheung.dl:2007.a]
D. L. Cheung, L. Anton, M. P. Allen, and A. J. Masters. Structure of molecular liquids: Closure relations for hard spheroids. Phys. Rev. E, 76, 041201/1–8, 2007. ( doi:10.1103/PhysRevE.76.041201)
[d — cheung.dl:2007.b]
D. L. Cheung and M. P. Allen. Liquid-crystal-mediated force between a cylindrical nanoparticle and substrate. Phys. Rev. E, 76, 041706/1–7, 2007. ( doi:10.1103/PhysRevE.76.041706)
[e — darinskii.aa:2007.a]
A. A. Darinskii, A. I. Tupitsyna, M. P. Allen, and I. Emri. Liquid crystal transitions induced by spherical particles in anisotropic polymer brushes: Molecular dynamics simulation. Polymer Science Ser A., 49, 944–959, 2007. ( doi:10.1134/S0965545X07080123)

2006

[a — allen.mp:2006.a]
Michael P. Allen. Configurational temperature in membrane simulations using dissipative particle dynamics. J. Phys. Chem. B, 110, 3823–3830, 2006. ( doi:10.1021/jp055119e)
[b — allen.mp:2006.b]
Michael P. Allen. Evaluation of pressure tensor in constant-volume simulations of hard and soft convex bodies. J. Chem. Phys., 124, 214103/1–4, 2006. ( doi:10.1063/1.2202352)
[c — cheung.dl:2006.a]
D. L. Cheung, L. Anton, M. P. Allen, and A. J. Masters. Structure of molecular liquids: Cavity and bridge functions of the hard spheroid fluid. Phys. Rev. E, 73, 061204/1–10, 2006. ( doi:10.1103/PhysRevE.73.061204)
[d — cheung.dl:2006.b]
D. L. Cheung and M. P. Allen. Structure of a liquid crystalline fluid around a macroparticle: Density functional theory. Phys. Rev. E, 74, 021701/1–8, 2006. ( doi:10.1103/PhysRevE.74.021701)
[e — allen.mp:2006.c]
Michael P. Allen and Guido Germano. Expressions for forces and torques in molecular simulations using rigid bodies. Molec. Phys., 104, 3225–3235, 2006. ( doi:10.1080/00268970601075238)
[f — allen.mp:2006.d]
Michael P. Allen. Computer simulation of liquid crystals. In M. Ferrario, G. Ciccotti, and K. Binder, editors, Computer Simulations in Condensed Matter: From Materials to Chemical Biology, volume 704 of Lecture Notes in Physics, pages 191–210, Heidelberg, 2006. Springer. Proceedings of Summer School, Erice, Sicily, July 2005.

2005

[a — allen.mp:2005.a]
Michael P. Allen. Computer simulation of multiscale phenomena in colloidal liquid crystals. Comput. Phys. Commun., 169, 433–437, 2005. ( doi:10.1016/j.cpc.2005.03.096)
[b — zadorozhnii.vi:2005.a]
V. I. Zadorozhnii, I. P. Pinkevich, V. Y. Reshetnyak, and M. P. Allen. Monte Carlo simulation of ferronematic suspensions with three elastic constants. Mol. Cryst. Liq. Cryst., 437, 1487–1494, 2005. ( doi:10.1080/15421400590957620)
[c — allen.mp:2005.b]
Michael P. Allen. Spin dynamics for the Lebwohl-Lasher model. Phys. Rev. E, 72, 036703, 2005. ( doi:10.1103/PhysRevE.72.036703)

2004

[a — downton.mt:2004.a]
M. T. Downton and Michael P. Allen. Computer simulation of liquid crystal surface modification. Europhys. Lett., 65, 48–54, 2004. ( doi:10.1209/epl/i2003-10046-x)
[b — allen.mp:2004.a]
Michael P. Allen. Introduction to molecular dynamics simulation. In N. Attig, K. Binder, H. Grubmüller, and K. Kremer, editors, Computational soft matter: from synthetic polymers to proteins, volume 23 of NIC Series, pages 1–27, Jülich, 2004. John von Neumann Institute for Computing, NIC-Directors.
[c — allen.mp:2004.b]
Michael P. Allen. Liquid crystal systems. In N. Attig, K. Binder, H. Grubmüller, and K. Kremer, editors, Computational soft matter: from synthetic polymers to proteins, volume 23 of NIC Series, pages 289–320, Jülich, 2004. John von Neumann Institute for Computing, NIC-Directors.
[d — albarwani.ms:2004.a]
M. S. Al-Barwani, G. S. Sutcliffe, and Michael P. Allen. Forces between two colloidal particles in a nematic solvent. J. Phys. Chem. B, 108, 6663–6666, 2004. ( doi:10.1021/jp037650k)
[e — west.jl:2004.a]
J. L. West, K. Zhang, G. X. Liao, A. V. Glushchenko, Y. Reznikov, D. Andrienko, and M. P. Allen. Mechanism of formation of three dimensional structures of particles in a liquid crystal. Mol. Cryst. Liq. Cryst., 410, 611–621, 2004. ( doi:10.1080/15421400490436124)

2003

[a — allen.mp:2003.a]
Michael P. Allen. Simulation and theory of inhomogeneous liquid crystals. In M. Ristig and K. Gernoth, editors, Particle Scattering, X-Ray diffraction, and Microstructure of solids and liquids, volume 610 of Lecture Notes in Physics, pages 101–131. Springer-Verlag, Berlin, 2003.
[b — andrienko.d:2003.a]
D. Andrienko, M. Tasinkevych, P. Patricio, Michael P. Allen, and M. M. Telo da Gama. Forces between elongated particles in a nematic colloid. Phys. Rev. E, 68, 051702/1–5, 2003. ( doi:10.1103/PhysRevE.68.051702)

2002

[a — andrienko.d:2002.a]
Denis Andrienko and Michael P. Allen. Theory and simulation of the nematic zenithal anchoring coefficient. Phys. Rev. E, 65, 021704/1–11, 2002. ( doi:10.1103/PhysRevE.65.021704)
[b — andrienko.d:2002.b]
Denis Andrienko, Michael P. Allen, Gregor Skacej, and Slobodan Zumer. Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host. Phys. Rev. E, 65, 041702/1–7, 2002. ( doi:10.1103/PhysRevE.65.041702)
[c — germano.g:2002.a]
Guido Germano, Michael P. Allen, and Andrew J. Masters. Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques. J. Chem. Phys., 116, 9422–9430, 2002. ( doi:10.1063/1.1475747)
[d — west.jl:2002.a]
J. L. West, A. Glushchenko, G. X. Liao, Y. Reznikov, D. Andrienko, and Michael P. Allen. Drag on particles in a nematic suspension by a moving nematic-isotropic interface. Phys. Rev. E, 66, 012702, 2002. ( doi:10.1103/PhysRevE.66.012702)
[e — theenhaus.t:2002.a]
T. Theenhaus, Michael P. Allen, M. Letz, A. Latz, and R. Schilling. Dynamical precursor of nematic order in a dense fluid of hard ellipsoids of revolution. Euro. Phys. J. E, 8, 269–274, 2002. ( doi:10.1140/epje/i2001-10093-7)

2001

[a — allen.mp:2001.a]
Michael P. Allen. Molecular simulations and coarse-grained theories of liquid crystals. In A. Brandt, J. Bernholc, and K. Binder, editors, Multiscale computational methods in chemistry and physics, volume 177 of NATO Science Series III: Computer and systems sciences, pages 226–228. IOS press, Amsterdam, 2001. Proceedings of the NATO Advanced Research Workshop `Multiscale computational methods in chemistry and physics', Eilat, Israel, April 5-7, 2000.
[b — andrienko.d:2001.a]
Denis Andrienko, Guido Germano, and Michael P. Allen. Computer simulation of topological defects around a colloidal particle or droplet dispersed in a nematic host. Phys. Rev. E, 63, 041701/1–8, 2001. ( doi:10.1103/PhysRevE.63.041701)
[c — akino.n:2001.a]
Nobuhiko Akino, Friederike Schmid, and Michael P. Allen. Molecular dynamics study of the nematic-isotropic interface. Phys. Rev. E, 63, 041706/1–6, 2001. ( doi:10.1103/PhysRevE.63.041706)
[d — allen.mp:2001.b]
Michael P. Allen and Andrew J. Masters. Molecular simulation and theory of liquid crystals: chiral parameters, flexoelectric coefficients, and elastic constants. J. Mater. Chem., 11, 2678–2689, 2001. ( doi:10.1039/b103900h)
[e — allen.mp:2001.c]
Michael P. Allen. Statistical mechanical simulations. In J. H. Moore and N. D. Spencer, editors, Encyclopedia of Chemical Physics and Physical Chemistry, volume 2, chapter B3.3, pages 1983–2025. Institute of Physics Publishing, Bristol, 2001.
[f — allen.mp:2001.d]
Michael P. Allen. Molecular simulations and theory of planar interfaces and defects in nematic liquid crystals. In O. D. Lavrentovich, P. Pasini, C. Zannoni, and S. Zumer, editors, Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, volume 43 of NATO Science Series II, pages 113–139. Kluwer Academic Publishers, Dordrecht, 2001. Proceedings of the NATO Advanced Research Workshop `Computer Simulations of Defects in Liquid Crystals including their relation to Theory and Experiment', Erice, Italy, September 19-23, 2000.

2000

[a — allen.mp:2000.a]
Michael P. Allen. Introduction to simulations and statistical mechanics. In C. Zannoni and P. Pasini, editors, Advances in the Computer Simulations of Liquid Crystals, volume 545 of NATO ASI Series C, pages 1–16. Kluwer Academic Publishers, Dordrecht, 2000. Proceedings of the NATO Advanced Study Institute `Advances in the Computer Simulations of Liquid Crystals', Erice, Italy, June 11-21, 1998.
[b — allen.mp:2000.b]
Michael P. Allen. Modelling liquid crystal structure, phase behaviour and large-scale phenomena. In C. Zannoni and P. Pasini, editors, Advances in the Computer Simulations of Liquid Crystals, volume 545 of NATO ASI Series C, pages 73–97. Kluwer Academic Publishers, Dordrecht, 2000. Proceedings of the NATO Advanced Study Institute `Advances in the Computer Simulations of Liquid Crystals', Erice, Italy, June 11-21, 1998.
[c — andrienko.d:2000.b]
Denis Andrienko and Michael P. Allen. Molecular simulation and theory of a liquid crystalline disclination core. Phys. Rev. E, 61, 504–510, 2000. ( doi:10.1103/PhysRevE.61.504)
[d — allen.mp:2000.c]
Michael P. Allen. Molecular simulation and theory of the isotropic-nematic interface. J. Chem. Phys., 112, 5447–5453, 2000. ( doi:10.1063/1.481112)
[e — allen.mp:2000.d]
Michael P. Allen. Long-range behaviour in liquid crystals by computer simulation. J. Molec. Liquids, 85, 161–171, 2000. ( doi:10.1016/S0167-7322(99)00172-5)
[f — mills.sj:2000.a]
Stuart J. Mills, Christopher M. Care, Maureen P. Neal, Mark R. Wilson, Michael P. Allen, and Douglas J. Cleaver. Formation of a nematic monodomain in a model liquid crystal film. J. Molec. Liquids, 85, 185–195, 2000. ( doi:10.1016/S0167-7322(99)00176-2)
[g — vanduijneveldt.js:2000.a]
J. S. van Duijneveldt, A. Gilvillegas, G. Jackson, and Michael P. Allen. Simulation study of the phase behavior of a primitive model for thermotropic liquid crystals: Rodlike molecules with terminal dipoles and flexible tails. J. Chem. Phys., 112, 9092–9104, 2000. ( doi:10.1063/1.481520)
[h — andrienko.d:2000.c]
Denis Andrienko, Guido Germano, and Michael P. Allen. Liquid crystal director fluctuations and surface anchoring by molecular simulation. Phys. Rev. E, 62, 6688–6693, 2000. ( doi:10.1103/PhysRevE.62.6688)
[i — albarwani.ms:2000.a]
Muataz S. Al-Barwani and Michael P. Allen. Isotropic-nematic interface of soft spherocylinders. Phys. Rev. E, 62, 6706–6710, 2000. ( doi:10.1103/PhysRevE.62.6706)
[j — allen.mp:2000.e]
Michael P. Allen. Pressure tensor profiles at the isotropic-nematic interface. Chem. Phys. Lett., 331, 513–518, 2000. ( doi:10.1016/S0009-2614(00)01207-0)
[k — mcdonald.aj:2000.a]
Andrew J. McDonald, Michael P. Allen, and Friederike Schmid. Surface tension of the isotropic-nematic interface. Phys. Rev. E, 63, 010701(R)/1–4, 2000. ( doi:10.1103/PhysRevE.63.010701)

1999

[a — dominguez.h:1999.a]
Hector Dominguez, Michael P. Allen, and Robert Evans. Monte Carlo studies of the freezing and condensation transitions of confined fluids. Molec. Phys., 96, 209–229, 1999. ( doi:10.1080/002689799165846)
[b — allen.mp:1999.a]
Michael P. Allen. Molecular simulation and theory of liquid crystal surface anchoring. Molec. Phys., 96, 1391–1397, 1999. ( doi:10.1080/002689799164621)
[c — wilson.mr:1999.a]
Mark R. Wilson, Michael P. Allen, Maureen P. Neal, Christopher M. Care, and Douglas J. Cleaver. Computer simulation of liquid crystals on the T3D/T3E. In R. J. Allan, M. F. Guest, A. D. Simpson, D. S. Henty, and D. A. Nicole, editors, High-Performance Computing, pages 193–202. Kluwer Academic / Plenum Publishers, New York, 1999. Proceedings of the HPCI conference, Manchester, England, January 12-14, 1998.
[d — camp.pj:1999.a]
P. J. Camp, Michael P. Allen, and A. J. Masters. Theory and computer simulation of bent-core molecules. J. Chem. Phys., 111, 9871–9881, 1999. ( doi:10.1063/1.480324)
[e — allen.mp:1999.b]
Michael P. Allen. Simulations and theories of liquid crystals. Comput. Phys. Commun., 122, 219–224, 1999. ( doi:10.1016/S0010-4655(99)00317-3)

1998

[a — allen.mp:1998.a]
Michael P. Allen, M. A. Warren, and M. R. Wilson. Molecular dynamics simulation of the smectic-A* twist grain-boundary phase. Phys. Rev. E, 57, 5585–5596, 1998. ( doi:10.1103/PhysRevE.57.5585)
[b — brown.jt:1998.a]
J. T. Brown, Michael P. Allen, E. Martín del Río, and E. de Miguel. Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys. Rev. E, 57, 6685–6699, 1998. ( doi:10.1103/PhysRevE.57.6685)
[c — lyulin.av:1998.a]
Alexey V. Lyulin, Muataz S. Al-Barwani, Michael P. Allen, Mark R. Wilson, Igor Neelov, and Nicholas K. Allsopp. Molecular dynamics simulation of main chain liquid crystalline polymers. Macromolecules, 31, 4626–4634, 1998. ( doi:10.1021/ma971105y)

1997

[a — vanduijneveldt.js:1997.a]
Jeroen S. van Duijneveldt and Michael P. Allen. Free energy barriers for interlayer diffusion in the smectic-A phase of hard spherocylinders. Molec. Phys., 90, 243–250, 1997. ( doi:10.1080/002689797172723)
[b — allen.mp:1997.a]
Michael P. Allen and Mark A. Warren. Simulation of structure and dynamics near the isotropic-nematic transition. Phys. Rev. Lett., 78, 1291–1294, 1997. ( doi:10.1103/PhysRevLett.78.1291)
[c — wilson.mr:1997.b]
M. R. Wilson, Michael P. Allen, M. A. Warren, A. Sauron, and W. Smith. Replicated data and domain decomposition molecular dynamics techniques for simulation of anisotropic potentials. J. Comput. Chem., 18, 478–488, 1997. ( doi:10.1002/(SICI)1096-987X(199703)18:4<478::AID-JCC3>3.0.CO;2-Q)
[d — yuan.xf:1997.a]
Xue-Feng Yuan and Michael P. Allen. Non-linear responses of the hard spheroid fluid under shear flow. Physica A, 240, 145–159, 1997. ( doi:10.1016/S0378-4371(97)00137-4)
[e — camp.pj:1997.b]
P. J. Camp and Michael P. Allen. Phase diagram of the hard biaxial ellipsoid fluid. J. Chem. Phys., 106, 6681–6688, 1997. ( doi:10.1063/1.473665)
[f — camp.pj:1997.c]
Philip J. Camp, Michael P. Allen, Peter G. Bolhuis, and Daan Frenkel. Demixing in hard ellipsoid rod-plate mixtures. J. Chem. Phys., 106, 9270–9275, 1997. ( doi:10.1063/1.474012)
[g — vanduijneveldt.js:1997.b]
J. S. van Duijneveldt and Michael P. Allen. Computer simulation study of a flexible-rigid-flexible model for liquid crystals. Molec. Phys., 92, 855–870, 1997. ( doi:10.1080/002689797169808)

1996

[a — cleaver.dj:1996.a]
Douglas J. Cleaver, Samo Kralj, Timothy J. Sluckin, and Michael P. Allen. The random anisotropy nematic spin model. In G. P. Crawford and S. Zumer, editors, Liquid crystals in complex geometries formed by polymer and porous networks, pages 467–481. Taylor and Francis, London, 1996.
[b — allen.mp:1996.a]
Michael P. Allen. Molecular dynamics for hard particles. In K. Binder and G. Ciccotti, editors, Monte Carlo and molecular dynamics of condensed matter systems, volume 49, chapter 3, pages 89–105. Italian Physical Society, Bologna, 1996. Proceedings of the Euroconference on `Computer simulation in condensed matter physics and chemistry', Como, Italy, July 3-28, 1995.
[c — allen.mp:1996.b]
Michael P. Allen. Simulation and phase diagrams. In K. Binder and G. Ciccotti, editors, Monte Carlo and molecular dynamics of condensed matter systems, volume 49, chapter 10, pages 255–284. Italian Physical Society, Bologna, 1996. Proceedings of the Euroconference on `Computer simulation in condensed matter physics and chemistry', Como, Italy, July 3-28, 1995.
[d — camp.pj:1996.a]
Philip J. Camp and Michael P. Allen. Hard ellipsoid rod-plate mixtures: Onsager theory and computer simulations. Physica A, 229, 410–427, 1996. ( doi:10.1016/0378-4371(96)00050-7)
[e — cleaver.dj:1996.b]
D. J. Cleaver, C. M. Care, M. P. Allen, and M. P. Neal. Extension and generalization of the Gay-Berne potential. Phys. Rev. E, 54, 559–567, 1996. ( doi:10.1103/PhysRevE.54.559)
[f — camp.pj:1996.b]
Philip J. Camp, Carl P. Mason, Michael P. Allen, Anjali A. Khare, and David A. Kofke. The isotropic-nematic transition in uniaxial hard ellipsoid fluids: coexistence data and the approach to the Onsager limit. J. Chem. Phys., 105, 2837–2849, 1996. ( doi:10.1063/1.472146)
[g — allen.mp:1996.c]
Michael P. Allen, Mark A. Warren, Mark. R. Wilson, Alain Sauron, and William Smith. Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals. J. Chem. Phys., 105, 2850–2858, 1996. ( doi:10.1063/1.472147)
[h — demiguel.e:1996.a]
E. de Miguel, E. Martín del Río, J. T. Brown, and Michael P. Allen. Effect of the attractive interactions on the phase behavior of the Gay-Berne liquid crystal model. J. Chem. Phys., 105, 4234–4249, 1996. ( doi:10.1063/1.472292)
[i — camp.pj:1996.c]
Philip J. Camp and Michael P. Allen. Phase coexistence in a pseudo Gibbs ensemble. Molec. Phys., 88, 1459–1469, 1996. ( doi:10.1080/00268979650025551)
[j — allen.mp:1996.d]
Michael P. Allen. Computer experiments on liquid crystals. Technical report, EPSRC Highlights in Physics, 1996.
[k — allen.mp:1996.e]
Michael P. Allen, Julian T. Brown, and Mark A. Warren. Computer simulation of liquid crystals. J. Phys. Cond. Mat., 8, 9433–9437, 1996. ( doi:10.1088/0953-8984/8/47/041)
[l — allen.mp:1996.f]
Michael P. Allen, Philip J. Camp, Carl P. Mason, Glenn T. Evans, and Andrew J. Masters. Viscosity of isotropic hard particle fluids. J. Chem. Phys., 105, 11175–11182, 1996. ( doi:10.1063/1.472916)

1995

[a — tang.s:1995.a]
Shuang Tang, Glenn T. Evans, Carl P. Mason, and Michael P. Allen. Shear viscosity for fluids of hard ellipsoids: a kinetic theory and molecular dynamics study. J. Chem. Phys., 102, 3794–3811, 1995. ( doi:10.1063/1.468561)
[b — allen.mp:1995.a]
Michael P. Allen. Introduction to Monte Carlo simulation. In M. Baus, L. F. Rull, and J. P. Ryckaert, editors, Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, volume 460 of NATO ASI Series C, pages 339–356. Kluwer Academic Publishers, Dordrecht, 1995. Proceedings of the NATO Advanced Study Institute and Enrico Fermi Course LXXIX on `Observation and Prediction of Phase Transitions in Complex Fluids', Varenna, Italy, July 25-August 8, 1994.
[c — allen.mp:1995.b]
Michael P. Allen. Simulations and phase behaviour of liquid crystals. In M. Baus, L. F. Rull, and J. P. Ryckaert, editors, Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, volume 460 of NATO ASI Series C, pages 557–591. Kluwer Academic Publishers, Dordrecht, 1995. Proceedings of the NATO Advanced Study Institute and Enrico Fermi Course LXXIX on `Observation and Prediction of Phase Transitions in Complex Fluids', Varenna, Italy, July 25-August 8, 1994.
[e — allen.mp:1995.c]
Michael P. Allen, Mark Warren, Mark Wilson, Alain Sauron, and William Smith. Computer simulation of liquid crystals on the T3D. CCP5 Quarterly, 43, February 1995.
[f — allen.mp:1995.d]
M. P. Allen, C. P. Mason, E. de Miguel, and J. Stelzer. Structure of molecular liquids. Phys. Rev. E, 52, R25–R28, 1995. ( doi:10.1103/PhysRevE.52.R25)
[g — allen.mp:1995.e]
Michael P. Allen and Carl P. Mason. Stability of the nematic phase for the hard ellipsoid fluid. Molec. Phys., 86, 467–474, 1995.
[h — allen.mp:1995.f]
Michael P. Allen. Computer simulation of liquid crystals. Technical Report 3, Flying High: Newsletter of CINECA's ICARUS Project, January 1995.
[i — allen.mp:1995.g]
Michael P. Allen. The CCP5 spring school. CCP5 Quarterly, 44, July 1995. Available online at http://www.ccp5.ac.uk/ftpfiles/ccp5.newsletters/44/pdf/allen.pdf.

1994

[a — samborski.a:1994.a]
Adam Samborski, Glenn T. Evans, Carl P. Mason, and Michael P. Allen. The isotropic to nematic liquid crystal transition for hard ellipsoids: an Onsager-like theory and computer simulations. Molec. Phys., 81, 263–276, 1994. ( doi:10.1080/00268979400100181)
[b — allen.mp:1994.a]
Michael P. Allen, D. Brown, and A. J. Masters. Use of the McQuarrie equation for the computation of shear viscosity via equilibrium molecular dynamics - comment. Phys. Rev. E, 49, 2488–2492, 1994. ( doi:10.1103/PhysRevE.49.2488)
[c — allen.mp:1994.b]
Michael P. Allen. Comment on `Relationship between McQuarrie and Helfand equations for the determination of shear viscosity from equilibrium molecular dynamics'. Phys. Rev. E, 50, 3277–3279, 1994. ( doi:10.1103/PhysRevE.50.3277)
[d — allen.mp:1994.c]
Michael P. Allen. Methods in molecular simulation CCP5 spring school 11–15 april. CCP5 Quarterly, 41, May 1994. Available online at http://www.ccp5.ac.uk/ftpfiles/ccp5.newsletters/41/pdf/allen.pdf.

1993

[a — allen.mp:1993.a]
Michael P. Allen. Simulation of condensed phases using the Distributed Array Processor. Theor. Chim. Acta, 84, 399–411, 1993. Parallel Computing in Chemical Physics, Chicago 1991. ( doi:10.1007/BF01113278)
[b — allen.mp:1993.b]
Michael P. Allen and Dominic J. Tildesley, editors. Computer simulation in chemical physics, volume 397 of NATO ASI Series C. Kluwer Academic Publishers, Dordrecht, 1993. 519pp. Proceedings of the NATO Advanced Study Institute on `New Perspectives on Computer Simulation in Chemical Physics', Alghero, Sardinia, Italy, September 14-24, 1992.
[c — allen.mp:1993.c]
Michael P. Allen. Back to basics. In Michael P. Allen and Dominic J. Tildesley, editors, Computer simulation in chemical physics, volume 397 of NATO ASI Series C, pages 49–92. Kluwer Academic Publishers, Dordrecht, 1993. Proceedings of the NATO Advanced Study Institute on `New Perspectives on Computer Simulation in Chemical Physics', Alghero, Sardinia, Italy, September 14-24, 1992.
[d — allen.mp:1993.d]
Michael P. Allen and Andrew J. Masters. Computer simulation of a twisted nematic liquid crystal. Molec. Phys., 79, 277–289, 1993. ( doi:10.1080/00268979300101211)
[e — allen.mp:1993.e]
Michael P. Allen and Andrew J. Masters. Some notes on Einstein relationships. Molec. Phys., 79, 435–443, 1993. ( doi:10.1080/00268979300101331)
[f — allen.mp:1993.f]
Michael P. Allen. Calculating the helical twisting power of dopants in a liquid crystal by computer simulation. Phys. Rev. E, 47, 4611–4614, 1993. ( doi:10.1103/PhysRevE.47.4611)
[g — allen.mp:1993.g]
Michael P. Allen. Simulations using hard particles. Phil. Trans. Roy. Soc. A, 344, 323–337, 1993. Theme Issue: Understanding Self-assembly and Organization in Liquid Crystals. ( doi:10.1098/rsta.1993.0093)
[h — cleaver.dj:1993.a]
Douglas J. Cleaver and Michael P. Allen. Computer simulation of liquid crystal films. Molec. Phys., 80, 253–276, 1993. ( doi:10.1080/00268979300102251)
[i — wilson.mr:1993.a]
Mark R. Wilson and Michael P. Allen. A computer simulation study of liquid crystal formation in a semi-flexible system of linked hard spheres. Molec. Phys., 80, 277–295, 1993. ( doi:10.1080/00268979300102261)
[j — allen.mp:1993.h]
Michael P. Allen, Glenn T. Evans, Daan Frenkel, and Bela Mulder. Hard convex body fluids. Adv. Chem. Phys., 86, 1–166, 1993.
[k — bereolos.p:1993.a]
Peter Bereolos, Julian Talbot, Michael P. Allen, and Glenn T. Evans. Transport properties of the hard ellipsoid fluid. J. Chem. Phys., 99, 6087–6097, 1993. ( doi:10.1063/1.466221)

1992

[a — tjiptomargo.b:1992.a]
Broto Tjipto-Margo, Glenn T. Evans, Michael P. Allen, and Daan Frenkel. Elastic constants of hard and soft nematic liquid crystals. J. Phys. Chem., 96, 3942–3948, 1992. ( doi:10.1021/j100189a007)
[b — wilson.mr:1992.a]
M. R. Wilson and M. P. Allen. Structure of trans-4-( trans-4-n-pentylcyclohexyl) cyclohexylcarbonitrile (CCH5) in the isotropic and nematic phases: a computer simulation study. Liq. Cryst., 12, 157–176, 1992. ( doi:10.1080/02678299208029045)
[c — demiguel.e:1992.a]
E. de Miguel and Michael P. Allen. Hard ellipsoids of revolution with square wells: a comparison between computer simulation and theory in the liquid-vapor region. Molec. Phys., 76, 1275–1279, 1992. ( doi:10.1080/00268979200102061)

1991

[a — cleaver.dj:1991.a]
Douglas J. Cleaver and Michael P. Allen. Computer simulations of the elastic properties of liquid crystals. Phys. Rev. A, 43, 1918–1931, 1991. ( doi:10.1103/PhysRevA.43.1918)
[b — wilson.mr:1991.a]
M. R. Wilson and M. P. Allen. Computer simulations of mesogenic molecules using realistic atom-atom potentials. Mol. Cryst. Liq. Cryst., 198, 465–477, 1991. ( doi:10.1080/00268949108033422)
[c — hess.s:1991.a]
Siegfried Hess, Daan Frenkel, and Michael P. Allen. On the anisotropy of diffusion in nematic liquid crystals: test of a modified affine transformation model via molecular dynamics. Molec. Phys., 74, 765–774, 1991. ( doi:10.1080/00268979100102561)
[d — allen.mp:1991.a]
Michael P. Allen. Computer simulation of liquid crystals. CCP5 Quarterly, 33, January 1991.
[e — allen.mp:1991.b]
Michael P. Allen and Martyn F. Guest. Scientific achievements of the Computational Science Initiative. 1991. 140pp.

1990

[a — allen.mp:1990.a]
Michael P. Allen and Daan Frenkel. Calculation of liquid crystal Frank constants by computer simulation. Phys. Rev. A, 42, 3641, 1990. Erratum. ( doi:10.1103/PhysRevA.42.3641)
[b — talbot.j:1990.b]
Julian Talbot, Daniel Kivelson, Michael P. Allen, Glenn T. Evans, and Daan Frenkel. Structure of the hard ellipsoid fluid. J. Chem. Phys., 92, 3048–3057, 1990. ( doi:10.1063/1.457902)
[c — allen.mp:1990.b]
Michael P. Allen. Computer simulation of a biaxial liquid crystal. Liq. Cryst., 8, 499–511, 1990. ( doi:10.1080/02678299008047365)
[d — talbot.j:1990.c]
Julian Talbot, Daniel Kivelson, Gilles Tarjus, Michael P. Allen, and Glenn T. Evans. Short-time correlations in liquids: Molecular-dynamic simulations of hard spheroids. Phys. Rev. Lett., 65, 2828–2831, 1990. ( doi:10.1103/PhysRevLett.65.2828)
[e — telodagama.mm:1990.b]
Margarida M. Telo da Gama, Pedro Tarazona, Michael P. Allen, and Robert Evans. The effect of confinement on the isotropic-nematic transition. Molec. Phys., 71, 801–821, 1990. ( doi:10.1080/00268979000102121)
[f — allen.mp:1990.c]
Michael P. Allen. Diffusion coefficient increases with density in hard ellipsoid liquid crystals. Phys. Rev. Lett., 65, 2881–2884, 1990. ( doi:10.1103/PhysRevLett.65.2881)
[g — catlow.cra:1990.a]
C. Richard A. Catlow, Steven C. Parker, and Michael P. Allen, editors. Computer simulation of fluids, polymers and solids, volume 293 of NATO ASI Series C, Dordrecht, 1990. Kluwer Academic Publishers.
[h — allen.mp:1990.d]
Michael P. Allen, David M. Heyes, Maurice Leslie, Sarah L. Price, William Smith, and Dominic J. Tildesley. Computer simulation exercises. In C. Richard A. Catlow, Steven C. Parker, and Michael P. Allen, editors, Computer simulation of fluids, polymers and solids, volume 293 of NATO ASI Series C, pages 431–536. Kluwer Academic Publishers, Dordrecht, 1990. Proceedings of the NATO Advanced Study Institute on `Computer simulation of fluids, polymers and solids', Bath, U.K., September 4-17, 1988.

1989

[a — allen.mp:1989.a]
Michael P. Allen. Molecular graphics and the computer simulation of liquid crystals. Molec. Simul., 2, 301–306, 1989. ( doi:10.1080/08927028908034607)
[b — walker.pam:1989.a]
P. Alexandra M. Walker and Michael P. Allen. A simulation study of ammonium nitrate in aqueous solution. Molec. Simul., 2, 307–312, 1989. ( doi:10.1080/08927028908034608)
[c — talbot.j:1989.a]
Julian Talbot, Michael P. Allen, Glenn T. Evans, Daan Frenkel, and Daniel Kivelson. Accuracy of Enskog theory for rotational versus translational motion: A molecular-dynamics study. Phys. Rev. A, 39, 4330–4332, 1989. ( doi:10.1103/PhysRevA.39.4330)
[d — allen.mp:1989.b]
M. P. Allen, D. Frenkel, and J. Talbot. Molecular dynamics simulation using hard particles. Comput. Phys. Rep., 9, 301–353, 1989. ( doi:10.1016/0167-7977(89)90009-9)
[e — allen.mp:1989.c]
Michael P. Allen. A molecular dynamics simulation study of rigid and non-rigid hard dumb-bells. Molec. Simul., 3, 251–261, 1989. ( doi:10.1080/08927028908031378)
[f — allen.mp:1989.d]
Michael P. Allen. Computer simulation of liquid crystal films. Molec. Simul., 4, 61–78, 1989. ( doi:10.1080/08927028908021965)
[g — allen.mp:1989.e]
Michael P. Allen and Kathryn Armitstead. Studies of adsorbed monolayers using a spatially-coupled Potts model. J. Phys. A Math. Gen., 22, 3011–3021, 1989. ( doi:10.1088/0305-4470/22/15/017)
[h — allen.mp:1989.f]
Michael P. Allen. A theoretical study of the Lebwohl-Lasher model in higher dimensions. Molec. Phys., 68, 181–189, 1989. ( doi:10.1080/00268978900102041)
[i — allen.mp:1989.g]
Michael P. Allen and Mark R. Wilson. Computer simulation of liquid crystals. J. Computer-Aided Molec. Des., 3, 335–353, 1989. ( doi:10.1007/BF01532020)
[j — allen.mp:1989.h]
Michael P. Allen. Quaternion quickie. CCP5 Quarterly, 31, October 1989.
[k — allen.mp:1989.i]
Michael P. Allen and Dominic J. Tildesley. Error in "computer simulation of liquids". CCP5 Quarterly, 31, October 1989.
[l — allen.mp:1989.j]
Michael P. Allen and Dominic J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, paperback edition, 1989.

1988

[a — allen.mp:1988.a]
Michael P. Allen and Daan Frenkel. Calculation of liquid crystal Frank constants by computer simulation. Phys. Rev. A, 37, 1813–1816, 1988. ( doi:10.1103/PhysRevA.37.1813)
[b — allen.mp:1988.b]
Michael P. Allen. Path integral simulation of rotors. CCP5 Quarterly, 29, November 1988.

1987

[a — allen.mp:1987.a]
Michael P. Allen and Anthony A. Imbierski. A molecular dynamics study of the hard dumb-bell system. Molec. Phys., 60, 453–473, 1987. ( doi:10.1080/00268978700100301)
[b — allen.mp:1987.b]
Michael P. Allen and Daan Frenkel. Observation of dynamical precursors of the isotropic-nematic transition by computer simulation. Phys. Rev. Lett., 58, 1748–1750, 1987. ( doi:10.1103/PhysRevLett.58.1748)
[c — allen.mp:1987.c]
Michael P. Allen and Seamus F. O'Shea. A Monte Carlo simulation study of orientational domain clusters in the planar quadrupole model. Molec. Simul., 1, 47–66, 1987. ( doi:10.1080/08927028708080930)
[d — allen.mp:1987.d]
Michael P. Allen and Dominic J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, hardback edition, 1987.

1986

[a — allen.mp:1986.a]
Michael P. Allen and Gisele Maréchal. Nonequilibrium molecular dynamics simulation of a molecular fluid subjected to an oscillatory perturbation. Molec. Phys., 57, 7–19, 1986. ( doi:10.1080/00268978600100011)
[b — allen.mp:1986.b]
Michael P. Allen and Ian C. H. Cunningham. A computer simulation study of idealized model tetrahedral molecules. Molec. Phys., 58, 615–625, 1986. ( doi:10.1080/00268978600101421)
[c — allen.mp:1986.c]
Michael P. Allen and Daan Frenkel. Molecular dynamics simulation of hard molecules. CCP5 Quarterly, 23, December 1986.

1985

[a — allen.mp:1985.a]
Michael P. Allen, Charles B. Hovenden, Richard P. Humes, Sant K. Mehta, Robert K. Thomas, and Mary A. White. Neutron scattering spectra from the hindered rotation of methane in methane + krypton mixtures adsorbed on graphite. Faraday Disc. Chem. Soc., 80, 171–182, 1985. ( doi:10.1039/DC9858000171)
[b — tildesley.dj:1985.a]
Dominic J. Tildesley and Michael P. Allen. Error in CCP5 programs MDTETRA and MDPOLY. CCP5 Quarterly, 16, March 1985.

1984

[a — allen.mp:1984.a]
Michael P. Allen. Atomic and molecular representations of molecular hydrodynamic variables. Molec. Phys., 52, 705–716, 1984. ( doi:10.1080/00268978400101491)
[b — allen.mp:1984.b]
Michael P. Allen. A molecular dynamics simulation study of octopoles in the field of a planar surface. Molec. Phys., 52, 717–732, 1984. ( doi:10.1080/00268978400101501)
[c — allen.mp:1984.c]
Michael P. Allen and Gisele Maréchal. Nonequilibrium molecular dynamics of molecules with bond length constraints. CCP5 Quarterly, 12, March 1984.
[d — allen.mp:1984.d]
Michael P. Allen, Hans C. Andersen, André Bellemans, John Board, Julian H. R. Clarke, Mauro Ferrario, Jim M. Haile, Shuichi Nosé, J. V. Opheusden, and Jean-Paul Ryckaert. New molecular dynamics methods for various ensembles. Technical report, Rapport d'activité scientifique du CECAM, 1984.

1983

[a — allen.mp:1983.a]
Michael P. Allen, Daan Frenkel, William Gignac, and John P. McTague. A Monte Carlo simulation study of the two-dimensional melting mechanism. J. Chem. Phys., 78, 4206–4222, 1983. ( doi:10.1063/1.445098)

1982

[a — allen.mp:1982.a]
Michael P. Allen. Algorithms for Brownian dynamics. Molec. Phys., 47, 599–601, 1982. ( doi:10.1080/00268978200100432)
[b — allen.mp:1982.b]
Michael P. Allen. Quaternion parameter algorithms. CCP5 Quarterly, 5, June 1982.

1981

[a — chappell.pj:1981.a]
Philip J. Chappell, Robert I. Hallem, Michael P. Allen, and Daniel Kivelson. Theory of depolarized light scattering. J. Chem. Phys., 74, 5929–5941, 1981. ( doi:10.1063/1.441030)
[b — allen.mp:1981.a]
Michael P. Allen, Philip J. Chappell, and Daniel Kivelson. A three-variable theory of flow birefringence and its relation to depolarized light scattering. J. Chem. Phys., 74, 5942–5945, 1981. ( doi:10.1063/1.441031)
[c — kivelson.d:1981.a]
Daniel Kivelson, Philip J. Chappell, and Michael P. Allen. A fruitful application of generalized hydrodynamics: depolarized light scattering. KINAM, 3, 57–70, 1981.
[d — allen.mp:1981.b]
Michael P. Allen and Daniel Kivelson. Nonequilibrium molecular dynamics simulation and the generalized hydrodynamics of transverse modes in molecular fluids. Molec. Phys., 44, 945–965, 1981. ( doi:10.1080/00268978100102911)

1980

[a — allen.mp:1980.a]
Michael P. Allen and Peter Schofield. Molecular dynamics simulation of a chemical reaction in solution. Molec. Phys., 39, 207–215, 1980. ( doi:10.1080/00268978000100171)
[b — allen.mp:1980.b]
Michael P. Allen. Brownian dynamics simulation of a chemical reaction in solution. Molec. Phys., 40, 1073–1087, 1980. ( doi:10.1080/00268978000102141)