Skip to main content Skip to navigation

Theory Group Lunchtime Seminars

Scheduled seminars are listed below.

Announcements and reminders will be posted to the physics-theory-group-seminar list.

To join this list:

  1. Sign into your university email account via webmail.
  2. Click the settings icon along the top icon bar (looks like a cog/gear).
  3. In the "Search Outlook settings" box type "distribution groups" and click the top search result.
  4. Under "Distribution groups I belong to" click the icon with two little people and a "+" sign.
  5. Search for physics-theory-group-seminar and double click on the result.
  6. Click "join". You will then be added to the email list once approved by a moderator.

To leave this list:

  1. Sign into your university email account via webmail.
  2. Click the settings icon along the top icon bar (looks like a cog/gear).
  3. In the "Search Outlook settings" box type "distribution groups" and click the top search result.
  4. Under "Distribution groups I belong to" click physics-theory-group-seminar.
  5. Click the "leave" icon above the list (looks like two people with a minus sign to their bottom right).

[If you are a member of Theory group, you will receive seminar announcements via physics-theory or physics-theory-staff. You do NOT need to subscribe to the above mailing list as well.]

Show all calendar items

Theory Seminar: Paul Goddard (Warwick), Determining the Fermi surface of high-temperature superconductors and other low-dimensional materials, 1300 in PS1.28

- Export as iCalendar
Location: PS1.28

I will discuss recent magnetotransport data on an underdoped high-temperature superconductor. To assist with the discussion I will first describe how one goes about mapping the Fermi surface of quasi-two-dimensional materials using high magnetic field measurements, focussing particularly on the technique of angle-dependent magnetoresistance. This will be illustrated using the results of earlier experiments on an organic superconductor, for which a full determination of the Fermi surface was possible. I then will contrast this with the more challenging measurements performed on YBa2Cu3O6+x and explain what conclusions can be drawn in this case.

More…

Show all calendar items