Skip to main content Skip to navigation

Theory Group Lunchtime Seminars

Scheduled seminars are listed below.

Announcements and reminders will be posted to the physics-theory-group-seminar list.

To join this list:

  1. Sign into your university email account via webmail.
  2. Click the settings icon along the top icon bar (looks like a cog/gear).
  3. In the "Search Outlook settings" box type "distribution groups" and click the top search result.
  4. Under "Distribution groups I belong to" click the icon with two little people and a "+" sign.
  5. Search for physics-theory-group-seminar and double click on the result.
  6. Click "join". You will then be added to the email list once approved by a moderator.

To leave this list:

  1. Sign into your university email account via webmail.
  2. Click the settings icon along the top icon bar (looks like a cog/gear).
  3. In the "Search Outlook settings" box type "distribution groups" and click the top search result.
  4. Under "Distribution groups I belong to" click physics-theory-group-seminar.
  5. Click the "leave" icon above the list (looks like two people with a minus sign to their bottom right).

[If you are a member of Theory group, you will receive seminar announcements via physics-theory or physics-theory-staff. You do NOT need to subscribe to the above mailing list as well.]

Show all calendar items

Rebecca Milot (Warwick), Optoelectronic Properties of Hybrid Metal Halide Perovskites

- Export as iCalendar
Location: PS1.28

Hybrid metal halide perovskites have shown extraordinary success as active layers in solar cells, with power conversion efficiencies rivalling existing silicon technologies. A benefit of perovskites is that they are comprised of low-cost, earth abundant materials, and perovskite thin films are easily synthesized with simple starting materials. Additionally, they exhibit exceptional optoelectronic properties, which include strong absorption across the entire visible spectrum, long charge-carrier lifetimes, and high charge-carrier mobilities. Optical-pump/THz-probe (OPTP) spectroscopy has proven to be an essential technique for studying the charge-carrier dynamics and charge-carrier mobility in many of these materials including lead-based, tin-based, two-dimensional, and mixed-halide/mixed-cation perovskites. These studies have determined that the charge-carrier mobility and charge-carrier recombination dynamics are strongly dependent on the chemical composition, defect density, band structure, and crystallinity. 

Show all calendar items

Let us know you agree to cookies