Skip to main content Skip to navigation

Latest Publications

Select tags to filter on

Impact of seasonal climate variability on constructed wetland treatment efficiency

Dykes, Charlotte, Pearson, Jonathan M., Bending, Gary D. and Abolfathi, Soroush

Free-water surface constructed wetlands (CWs) are sustainable, low emission, nature-based solutions for water and wastewater treatment. However, the discharge of nutrient-rich effluents from CWs treating wastewater can adversely impact freshwater ecosystems and exacerbate eutrophication. Despite their ecological benefits, limited research exists on the treatment efficiency and pollutant dynamics of CWs under varying seasonal and environmental pressures. This study investigates the treatment efficiency of an integrated CW (ICW) serving as a nature-based solution for treating partially treated wastewater before release into the environment. Our findings highlight the dynamic and sensitive mechanisms influencing nutrient removal in CWs, driven by seasonal hydraulic conditions, vegetation phenology, and climatic factors. The study provides critical insights for optimizing CW design and management under fluctuating environmental conditions to enhance their resilience, ensure regulatory compliance, and maintain long-term treatment efficiency. This understanding is essential for guiding future regulatory policies and ensuring that CWs meet water quality standards in response to climate pressures.

Journal of Water Process Engineering. March 2025


Rootrainertrons: a novel root phenotyping method used to identify genotypic variation in lettuce rooting

Cara Wharton, Andrew Beacham, Miriam L. Gifford and James Monaghan

There is much interest in how roots can be manipulated to improve crop performance in a changing climate, yet root research is made difficult by the challenges of visualising the root system accurately, particularly when grown in natural environments such as soil. This study reports a novel, low cost, Rootrainer-based system for root phenotyping. This novel Rootrainertron method has many advantages over existing methods of phenotyping seedling roots. Rootrainers are cheap, and readily available from garden centres, unlike rhizotrons which are expensive and only available from specialist suppliers. Rootrainers allow the roots to grow in substrate medium, providing a significant advantage over agar and paper assays.This approach offers an affordable and relevant root phenotyping option and makes root phenotyping more accessible and applicable for researchers.

Plant Methods. March 2025


Cost-effectiveness of routine COVID-19 adult vaccination programmes in England

Matt J. Keeling, Edward M. Hill, Stavros Petrou, Phuong Bich Tran, May Ee Png, Sophie Staniszewska, Corinna Clark, Katie Hassel, Julia Stowe, Nick Andrews

In England, and many other countries, immunity to SARS-CoV-2 infection and COVID-19 disease is highly heterogeneous.. During the height of the pandemic in England, the main aim was to rapidly protect the population and large supplies of vaccine were pre-purchased, eliminating the need for cost-effective calculations. As we move to an era where for the majority of the population SARS-CoV-2 infections cause relatively mild disease, and vaccine stocks need to be re-purchased, it is important we consider the cost-effectiveness and economic value of COVID-19 vaccination programmes. Here using data from 2023 and 2024 in England on COVID-19 hospital admissions, ICU admissions and deaths, coupled with bespoke health economic costs, we consider the willingness to pay threshold for COVID-19 vaccines in different age and risk groups.

Vaccine. March 2025

Fri 11 Apr 2025, 08:38 | Tags: Microbiology & Infectious Disease

One-two punch : phage-antibiotic synergy observed against staphylococcus aureus by combining pleurotin and phage K

Michaël Dagne Tadesse, Nala Ali, Martha White, Lijiang Song, Fabrizio Alberti, Antonia P. Sagona 

There is an urgent need for novel antimicrobial therapies, chemical and nonantibiotic. The basidiomycota-derived, secondary metabolite pleurotin has been shown to be effective against Gram-positive bacteria, while bacteriophages could be the ultimate nonantibiotic alternative. In this study, the combination of pleurotin and phage K targeting S. aureus was examined. Pleurotin was isolated from the basidiomycota fungus Hohenbuehelia grisea. The cytotoxicity of pleurotin was assessed in two human cell lines in comparison to pleuromutilin, vancomycin, and phage K. The antibiotics were then tested independently or in combination with phage K against two S. aureus strains. Cytotoxicity of pleurotin in human cells was comparable to vancomycin and pleuromutilin. Results suggest that adding phage K has a synergistic effect and can lower the MIC for pleurotin, pleuromutilin, and vancomycin. This demonstrates that pleurotin could be a viable antistaphylococcal drug.

ACS Omega. March 2025


Impact of Phage Therapy on Pseudomonas syringae pv. syringae and Plant Microbiome Dynamics Through Coevolution and Field Experiments

Matevz Papp-Rupar, Emily R. Grace, Naina Korotania, Maria-Laura Ciusa, Robert W. Jackson, Mojgan Rabiey

Isolation of phages targeting the cherry pathogen Pseudomonas syringae pv. syringae (Pss) led to five distinct phage genotypes. Building on previous in vitro coevolution experiments, the coevolution of the five phages (individually and as a cocktail) with Pss on cherry leaves was conducted in glasshouse and field experiments. Phages effectively reduced Pss numbers on detached leaves, with no evidence of phage resistance emerging in the bacterial population. Field application of phages in a cherry orchard in Southeast England evaluated phage survival, viability and impact on bacterial populations and the microbial community. The bacterial population and phages persisted in the leaf and shoot environment as long as the bacterial host was present. In contrast to in vitro studies, the plant environment constrained the emergence of phage resistant Pss populations.

Environmental Microbiology. March 2025


Single-calibration cell size measurement with flow cytometry

Philip Davies, Massimo Cavallaro, Daniel Hebenstreit

Measuring the size of individual cells in high-throughput experiments is often important in biomedical research and applications.  In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.

Cytometry Part A March 2025

Fri 04 Apr 2025, 07:24 | Tags: Quantitative, Systems & Engineering Biology

Older news