Skip to main content Skip to navigation

Latest Publications

Select tags to filter on

Better understanding complex pathomechanisms in central nervous system disorders as a prerequisite for improved diagnostic and therapeutic approaches

Piotr Walczak, Shen Li, Xumming Ji, Johannes Boltze

Central nervous system (CNS) disorders are usually characterized by a complex pathophysiology. The last issue of Neuroprotection featured reviews and research articles looking at peripheral factors such as the gut microbiome or a history of pre-eclampsia and their impact on CNS conditions. Articles presented in the current issue of Neuroprotection will shift the focus back to the CNS but will continue to provide insights from recent research that help to better understand the pathophysiological complexity of CNS conditions.

Neuroinflammation is known to be a hallmark and major contributor to many CNS diseases. It comprises both peripheral and central immune cells and can be modulated by frequent comorbidities such as hypertension. Moreover, neuroinflammatory processes can involve cell populations not primarily characterized as immune cells. Psychiatric conditions, including major depressive disorders (MDD), are increasingly recognized to be linked to neuroinflammation but also to systemic comorbidities, stress and aging. A better understanding of neuroinflammatory processes in the context of psychiatric conditions may help to identify novel therapeutic targets for better and potentially causal treatment strategies.

Neuroprotection, September 2025

Tue 18 Nov 2025, 09:52 | Tags: Neuroscience

Development of biological soil crusts at the soil surface influences the persistence and movement of crop protection products

Laurence Hand, Mark C.J. Day, Carol Nichols, Hendrik Schäfer, Samantha Marshall, Gary D. Bending

Laboratory soil biodegradation studies required for approval of crop protection products (CPPs) are performed under continuous darkness, nullifying any potential contributions of algal and moss dominated biological soil crusts (BSC). There is growing evidence for metabolism of CPPs by phototrophic microorganisms under laboratory conditions, but limited data is available under field conditions. In this study we investigated the impact of the BSC on the fate of two 14C-fungicides under semi-field conditions using different light filters to alter formation of the BSC by exclusion/transmission of UV and photosynthetically active (PAR) wavelengths. Attenuation of PAR light significantly reduced formation of a BSC, which resulted in a significant slowing of the dissipation of benzovindiflupyr, which is known to be susceptible to phototrophic metabolism in aquatic systems, with 12–14 % more parent compound remaining at the end of the study when BSC development was impeded. For paclobutrazol, however, no significant difference in dissipation rate was observed. For both compounds there was significantly less non-extractable residue (NER) formation when BSC development was impeded (4–9 % reduction). Additionally, for both fungicides, the presence of a viable BSC resulted in 10–20 % more movement through the surface 5 mm of the soil, although this effect was limited to the period immediately after application and was likely due to increased porosity of the surface layer. This study confirms that the presence of phototrophs can significantly impact the environmental fate of CPPs on the surface of agricultural fields, either directly through metabolism or indirectly by altering the properties of the surface layer.

Science of The Total Environment November 2025


Population genetics show that aphids (Hemiptera: Aphididae) are limited by summer host-plant distribution at the regional scale

Dion Garrett, Graham Teakle, Rosemary Collier, James R Bell, Ramiro Morales-Hojas

Nasonovia ribisnigri (Mosley) is a severe aphid pest of outdoor lettuce, and the combination of sporadic and unpredictable colonization on outdoor lettuce, along with the breakdown of cultivar resistance, has left few effective control methods. The population structure (spatially and temporally) of N. ribisnigri is currently unknown in England, and therefore microsatellite markers were designed to estimate the impacts of host plant selection pressure (including host plant resistance) and environmental change. Biological samples collected between 2003 and 2020 from 10 sites across England were typed with microsatellite markers. The analysis of 8 microsatellites indicated a clear east-west divide between N. ribisnigri populations, which corresponds with current outdoor lettuce cultivation distribution in England, one of the aphid's summer hosts. Analysis of gene flow indicated that aphids did not leave the eastern region; instead, there was strong evidence for aphids migrating from the West into the secondary host eastern region, possibly from the winter host (Ribes spp.) in Spring. This result suggests that although N. ribisnigri has the potential for long-distance migration, strong ties to the summer host (lettuce) determine migratory behavior at the population level. N. ribisnigri are mostly holocyclic and show a high level of inbreeding. Long-term trends revealed relatively stable populations, despite a recent breakdown of host plant resistance and other environmental changes, including favorable temperatures. The geographic and temporal structure of the N. ribisnigri population is discussed in relation to future pest management strategies.

Journal of Insect Science October 2025

Fri 14 Nov 2025, 10:18 | Tags: Plant & Agricultural Bioscience

Foliimonas ilicis gen. nov., sp. nov., a carbon monoxide-oxidizing bacterium belonging to a novel genus of the family Phyllobacteriaceae isolated from leaves of Ilex aquifolium

Sinchan Banerjee, Andras Tancsics, Zegin Wu, Tudor Stafioiu, Jiacheng Gao, Erika Toth, Erzsebet Baka, Garry Bending, Hendrik Schaefer

A novel carbon monoxide (CO)-oxidizing bacterial strain designated as SB112T was enriched and isolated from leaves from Tocil Wood Nature Reserve in Coventry, UK. The strain was Gram reaction-negative, aerobic, rod-shaped, motile with a polar flagellum and non-spore-forming. Growth of strain SB112T was observed at 10–45 °C, pH 6.0–12.0 and NaCl concentrations of 1–3%. The genomic DNA G+C content was 58.3 mol%, and the major fatty acids (>10%) of strain SB112T were C ω7c, C ω7c 11-methyl and C cyclo ω7c. Major polar lipids were phosphatidylcholine, diphosphatidylglycerol, phosphatidylglycerol and a phospholipid. Strain SB112ᵀ contains ubiquinone-10 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SB112T formed a separate lineage within the family , showing sequence identities of 97.7%, 97.6% and 97.5%, with its closest relatives , and , respectively. Phylogenomic analyses using whole-genome sequences consistently placed this strain within the family . However, its phylogenetic position did not correspond to any known genus within this family. The genome of strain SB112T was found to possess the form II gene, which encodes the large subunit of the CO dehydrogenase and potentially enables CO oxidation. The average nucleotide identity and digital DNA–DNA hybridization with members of closely related genera yielded values below the thresholds for prokaryotic species delineation (95–96 and 70%, respectively). Based on the phenotypic, chemotaxonomic, phylogenetic, genomic and physiological properties, strain SB112T is considered to represent a novel species of a new genus within the family for which the name gen. nov., sp. nov. is proposed. The type of strain is SB112T (=LMG 33802T, =NCAIM B.02691T

Microbiology Society


Shift your perspective from deficit thinking to a model of appreciation that values the student voice

Samantha Wilson-Thain, Beatriz Lagunas, Ryan Arthur, Janet Beard, Sophie Martucci

The University of Warwick, School of Life Sciences “Welcome Week+” initiative has taken a novel approach to welcoming students, with their sense of belonging at its core. Through co-creation between staff and students working as partners, we have developed a programme with student voice at its heart and which shifts the transition perspective from “deficit” thinking, to celebrating diversity. Supporting students, in particular students who meet widening participation criteria, the “Welcome Week+” initiative set out to better prepare students through managing expectations and improving the introduction to the School of Life Sciences, while building a sense of their place and value in the school before arrival.

Shifting perspectives of “deficit” thinking, to learning more about what our students bring to us and the power of diversity in boosting belonging for everyone, is central to the success and impact of the welcome experience.

Student Belonging in Action, October 2025

Wed 12 Nov 2025, 10:57

Mitochondrial ROS trigger interorganellular signaling and prime ER processes to establish enhanced plant immunity

Yang Yang, Yan Zhao, Wei Zhao, Yingqi Zhang, Hongmei Wang, Murray Grant, Patrick Schäfer, Yuling Meng, Weixing Shan

Reactive oxygen species (ROS) are key signaling molecules in plant development and immunity, but current understanding is primarily focused on apoplastic and chloroplastic ROS. Mitochondria are also a key source of intracellular ROS, yet their contribution to plant immunity is poorly characterized. Here, we studied mitochondrial ROS (mROS) function in plant-pathogen interactions, deploying genetically encoded sensors, assorted fluorescent markers, and genetic approaches to track mROS, specifically H2O2, dynamics and identify interorganelle contact sites. We unexpectedly found a mitochondria–endoplasmic reticulum (ER) ROS signal cascade functioning independently of apoplastic and chloroplastic ROS in plant immunity. mROS initiate immune responses induced by the oomycete pathogen Phytophthora parasitica and promote mitochondria-ER association. These enhanced mitochondria-ER membrane associations are required for transfer of mROS signals and initiation of extensive unfolded protein responses. We conclude that mROS transfer via mitochondria-ER membranes to the ER lumen is an underappreciated yet essential component in plant defense.

Science Advances 2025


Latest news Newer news Older news

Let us know you agree to cookies