Latest Publications
A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion
Mireia Montaner, Jessica Denom, Vincent Simon, Wanqing Jiang, Marie K. Holt, Daniel I. Brierley, Claude Rouch, Ewout Foppen, Nadim Kassis, David Jarriault, Dawood Khan, Louise Eygret, Francois Mifsud, David J. Hodson, Johannes Broichhagen, Lukas Van Oudenhove, Xavier Fioramonti, Victor Gault, Daniela Cota, Frank Reimann, Fiona M. Gribble, Stephanie Migrenne-Li, Stefan Trapp, Hirac Gurden & Christophe Magnan
Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB). We show that activating GLP-1 receptors (GLP-1R) in the OB stimulates insulin secretion in response to oral glucose in lean and diet-induced obese male mice. This is associated with reduced noradrenaline content in the pancreas and blocked by an α2-adrenergic receptor agonist, implicating functional involvement of the sympathetic nervous system (SNS). Inhibiting GABAA receptors in the paraventricular nucleus of the hypothalamus (PVN), the control centre of the SNS, abolishes the enhancing effect on insulin secretion induced by OB GLP-1R. Therefore, OB GLP-1-dependent regulation of insulin secretion relies on a relay within the PVN. This study provides evidence that OB GLP-1 signalling engages a top-down neural mechanism to control insulin secretion via the SNS.
Acidic polymers reversibly deactivate phages due to pH changes
Huba L. Marton, Antonia P. Sagona, Peter Kilbride and Matthew I. Gibson
Poly(carboxylic acids) have been reported to inhibit phages’ ability to infect their bacterial hosts and hence offer an exciting route to discover additives to prevent infection. Here, we report the role of pH in inactivating phages to determine if the polymers are unique or simply acidic. It is shown that lower pH (= 3) triggered by either acidic polymers or similar changes in pH using HCl lead to inhibition. There is no inhibitory activity at higher pHs (in growth media). It is also shown that poly(acrylic acid) leads to reversible deactivation of phage, but when the pH is adjusted using HCl alone the phage is irreversibly deactivated. Further experiments using metal binders ruled out ion depletion as the mode of action. These results show that polymeric phage inhibitors may work by unique mechanisms of action and that pH alone cannot explain the observed effects whilst also placing constraints on the practical utility of poly(acrylic acid).
Matt Keeling publications
Prioritising older individuals for COVID-19 booster vaccination leads to optimal public health outcomes in a range of socio-economic settings
The rapid development of vaccines against SARS-CoV-2 altered the course of the COVID-19 pandemic. In most countries, vaccinations were initially targeted at high-risk populations, including older individuals and healthcare workers. Policy makers must now determine how to deploy booster vaccinations, particularly when constraints in vaccine supply, delivery and cost mean that booster vaccines cannot be administered to everyone. A key question is whether older individuals should again be prioritised for vaccination, or whether alternative strategies (e.g. offering booster vaccines to the individuals who have most contacts with others and therefore drive infection) can instead offer indirect protection to older individuals. Here, we use mathematical modelling to address this question, considering SARS-CoV-2 transmission in a range of countries with different socio-economic backgrounds. We show that the population structures of different countries can have a pronounced effect on the impact of booster vaccination, even when identical booster vaccination targeting strategies are adopted. However, under the assumed transmission model, prioritising older individuals for booster vaccination consistently leads to the most favourable public health outcomes in every setting considered. PLoS Computational Biology. August 2024
Modelling timelines to elimination of sleeping sickness in the Democratic Republic of Congo, accounting for possible cryptic human and animal transmission
Crump, Ronald E., Aliee, Maryam, Sutherland, Samuel A., Huang, Ching-I, Crowley, Emily, Spencer, Simon E. F., Keeling, Matt J., Shampa, Chansy, Mwamba Miaka, Erick and Rock, Kat S.Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised. Parasites & Vectors. August 2024
Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson’s substantia nigra
Jake Brooks, James Everett, Emily Hill, Kharmen Billimoria, Christopher M. Morris, Peter J. Sadler, Neil Telling & Joanna F. Collingwood
Neuromelanin-pigmented neurons of the substantia nigra are selectively lost during the progression of Parkinson’s disease. These neurons accumulate iron in the disease state, and iron-mediated neuron damage is implicated in cell death. Here, scanning transmission x-ray microscopy (STXM) is used to probe iron foci in relation to the surrounding ultrastructure in melanised neurons of human substantia nigra from a confirmed Parkinson’s case. The findings show that STXM is a powerful label-free tool for the in situ, nanoscale chemical characterisation of both organic and inorganic intracellular components. Future applications are likely to shed new light on incompletely understood biochemical mechanisms, such as metal dysregulation and morphological changes to cell nucleoli, that are important in understanding the pathogenesis of Parkinson’s.
Fluorinated trehalose analogues for cell surface engineering and imaging of Mycobacterium tuberculosis
Collette S. Guy, James A. Gott, Jonathan Ramírez-Cárdenas, Christopher de Wolf, Christopher M. Furze, Geoff West, Juan C. Muñoz-García, Jesus Angulo and Elizabeth Fullam
The sensitive, rapid and accurate diagnosis of Mycobacterium tuberculosis (Mtb) infection is a central challenge in controlling the global tuberculosis (TB) pandemic. Yet the detection of mycobacteria is often made difficult by the low sensitivity of current diagnostic tools, with over 3.6 million TB cases missed each year. To overcome these limitations there is an urgent need for next-generation TB diagnostic technologies. Here we report the use of a discrete panel of native 19F-trehalose (F-Tre) analogues to label and directly visualise Mtb by exploiting the uptake of fluorine-modified trehalose analogues via the mycobacterial trehalose LpqY-SugABC ATP-binding cassette (ABC) importer.. This rapid one-step labelling approach facilitates the direct visualisation of F-Tre-labelled Mtb by Focused Ion Beam (FIB) Secondary Ion Mass Spectrometry (SIMS), enabling detection of the Mtb pathogen. Collectively, our findings highlight that F-Tre analogues have potential as tools to probe and unravel Mtb biology and can be exploited to detect and image TB
A new model of endotracheal tube biofilm identifies combinations of matrix-degrading enzymes and antimicrobials able to eradicate biofilms of pathogens that cause ventilator-associated pneumonia
Dean Walsh, Chris Parmenter, Saskia E Bakker, Trevor Lithgow, Ana Traven, Freya Harrison
Ventilator-associated pneumonia is defined as pneumonia that develops in a patient who has been on mechanical ventilation for more than 48 hours through an endotracheal tube. It is caused by biofilm formation on the indwelling tube, which introduces pathogenic microbes such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans into the patient's lower airways. Currently, there is a lack of accurate in vitro models of ventilator-associated pneumonia development. Here, we showcase a reproducible model that simulates the biofilm formation of these pathogens in a host-mimicking environment and demonstrate that the biofilm matrix produced differs from that observed in standard laboratory growth medium. Our in vitro endotracheal tube model informs on fundamental microbiology in the ventilator-associated pneumonia context and has broad applicability as a screening platform for antibiofilm measures including the use of matrix-degrading enzymes as antimicrobial adjuvants.