Skip to main content Skip to navigation

Latest Publications

Select tags to filter on

Biophysical basis of filamentous phage tactoid-mediated antibiotic tolerance in P. aeruginosa

Jan Böhning, Miles Graham, Suzanne C. Letham, Luke K. Davis, Ulrike Schulze, Phillip J. Stansfeld, Robin A. Corey, Philip Pearce, Abul K. Tarafder, Tanmay A. M. Bharat

Inoviruses are filamentous phages infecting numerous prokaryotic phyla. Inoviruses can self-assemble into mesoscale structures with liquid-crystalline order, termed tactoids, which protect bacterial cells in Pseudomonas aeruginosa biofilms from antibiotics. Here, we investigate the structural, biophysical, and protective properties of tactoids formed by the P. aeruginosa phage Pf4 and Escherichia coli phage fd. This study provides insights into how filamentous molecules protect bacteria from extraneous substances in biofilms and in host-associated infections.

Nature Communications. December 2023

Mon 22 Jan 2024, 08:01 | Tags: Microbiology & Infectious Disease HDC

A monomeric StayGold fluorescent protein

Esther Ivorra-Molla, Dipayan Akhuli, Martin B. L. McAndrew, William Scott, Lokesh Kumar, Saravanan Palani, Masanori Mishima, Allister Crow & Mohan K. Balasubramanian

StayGold is an exceptionally bright and stable fluorescent protein that is highly resistant to photobleaching. Despite favorable fluorescence properties, use of StayGold as a fluorescent tag is limited because it forms a natural dimer. Here we report the 1.6 Å structure of StayGold and generate a derivative, mStayGold, that retains the brightness and photostability of the original protein while being fully monomeric.

Nature Biotechnology. December 2023

Fri 05 Jan 2024, 08:33 | Tags: Microbiology & Infectious Disease HDC

LipIDens: Simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins.

T. Bertie Ansell, Wanling Song, Claire E. Coupland, Loic Carrique, Robin A. Corey, Anna L. Duncan, C. Keith Cassidy, Maxwell M. G. Geurts, Tim Rasmussen, Andrew B. Ward, Christian Siebold, Phillip J. Stansfeld, Mark S. P. Sansom

Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures.

Nature Communications. November 2023


LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry.

Yiying Yang, Haoxiang Chen, Robin A. Corey, Violette Morales, Yves Quentin, Carine Froment, Anne Caumont-Sarcos, Cécile Albenne, Odile Burlet-Schiltz, David Ranava, Phillip J. Stansfeld, Julien Marcoux, Raffaele Ieva

Insertion of lipopolysaccharide (LPS) into the bacterial outer membrane (OM) is mediated by a druggable OM translocon consisting of a β-barrel membrane protein, LptD, and a lipoprotein, LptE. The β-barrel assembly machinery (BAM) assembles LptD together with LptE at the OM. In the enterobacterium Escherichia coli, formation of two native disulfide bonds in LptD controls translocon activation. Here we report the discovery of LptM (formerly YifL), a lipoprotein conserved in Enterobacteriaceae, that assembles together with LptD and LptE at the BAM complex.. Our results suggest that, by mimicking LPS binding, LptM facilitates oxidative maturation of LptD, thereby activating the LPS translocon.

Nature Communications. October 2023

Thu 02 Nov 2023, 08:21 | Tags: Neuroscience Microbiology & Infectious Disease HDC

Structure of the Native Chemotaxis Core Signalling Unit from E-gene lysed E. coli cells

CK Cassidy, Zhuan Qin, Thomas Frosio, Khoosheh Gosink, Zhengyi Yang, Mark Sansom, Phillip Stansfeld, John Parkinson, and Peijun Zhang

The sensory apparatus of the chemotaxis pathway is an array of core-signaling units (CSUs) composed of transmembrane chemoreceptors, the histidine kinase CheA and an adaptor protein, CheW. Although chemotaxis pathways represent the best understood signaling systems, a detailed mechanistic understanding of signal transduction has been hindered by the lack of a complete structural picture of the CSU and extended array. In this study, we present the structure of the complete CSU from phage ϕX174 E protein lysed Escherichia coli cells, determined using cryo-electron tomography and sub-tomogram averaging to 12-Å resolution. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.

mBio. September 2023

Thu 19 Oct 2023, 09:07 | Tags: Neuroscience HDC

Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex

Rie Nygaard, Chris L. B. Graham, Meagan Belcher Dufrisne, Jonathan D. Colburn, Joseph Pepe, Molly A. Hydorn, Silvia Corradi, Chelsea M. Brown, Khuram U. Ashraf, Owen N. Vickery, Nicholas S. Briggs, John J. Deering, Brian Kloss, Bruno Botta, Oliver B. Clarke, Linda Columbus, Jonathan Dworkin, Phillip J. Stansfeld, David I. Roper & Filippo Mancia

Peptidoglycan (PG) assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.

Nature Communications. August 2023


Older news