Coronavirus (Covid-19): Latest updates and information
Skip to main content Skip to navigation

Recent Publications

10 most recent research publications

(ADS RSS feed)

ADS (authors="STEEGHS, D")
We have adapted the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Science Pipelines to process data from the Gravitational-Wave Optical Transient Observer (GOTO) prototype. In this paper, we describe how we used the Rubin Observatory LSST Science Pipelines to conduct forced photometry measurements on nightly GOTO data. By comparing the photometry measurements of sources taken on multiple nights, we find that the precision of our photometry is typically better than 20~mmag for sources brighter than 16 mag. We also compare our photometry measurements against colour-corrected PanSTARRS photometry, and find that the two agree to within 10~mmag (1$\sigma$) for bright (i.e., $\sim14^{\rm th}$~mag) sources to 200~mmag for faint (i.e., $\sim18^{\rm th}$~mag) sources. Additionally, we compare our results to those obtained by GOTO's own in-house pipeline, {\sc gotophoto}, and obtain similar results. Based on repeatability measurements, we measure a $5\sigma$ L-band survey depth of between 19 and 20 magnitudes, depending on observing conditions. We assess, using repeated observations of non-varying standard SDSS stars, the accuracy of our uncertainties, which we find are typically overestimated by roughly a factor of two for bright sources (i.e., $<15^{\rm th}$~mag), but slightly underestimated (by roughly a factor of 1.25) for fainter sources ($>17^{\rm th}$~mag). Finally, we present lightcurves for a selection of variable sources, and compare them to those obtained with the Zwicky Transient Factory and GAIA. Despite the Rubin Observatory LSST Science Pipelines still undergoing active development, our results show that they are already delivering robust forced photometry measurements from GOTO data.
We present results of our analysis of up to 15 yr of photometric data from eight AM CVn systems with orbital periods between 22.5 and 26.8 min. Our data have been collected from the GOTO, ZTF, Pan-STARRS, ASAS-SN, and Catalina all-sky surveys and amateur observations collated by the AAVSO. We find evidence that these interacting ultracompact binaries show a similar diversity of long-term optical properties as the hydrogen accreting dwarf novae. We found that AM CVn systems in the previously identified accretion disc instability region are not a homogenous group. Various members of the analysed sample exhibit behaviour reminiscent of Z Cam systems with long superoutbursts (SOs) and standstills, SU UMa systems with regular, shorter SOs, and nova-like systems that appear only in a high state. The addition of TESS full frame images of one of these systems, KL Dra, reveals the first evidence for normal outbursts appearing as a precursor to SOs in an AM CVn system. Our results will inform theoretical modelling of the outbursts of hydrogen deficient systems.